This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324887 #5 Mar 31 2019 00:17:39 %S A324887 2,6,30,36,210,300,2310,120,1260,2940,30030,15000,510510,50820, %T A324887 21176820,3600,9699690,88200,223092870,288120,2232166860,780780, %U A324887 6469693230,42000,645668100,17357340,11880,12298440,200560490130,66555720,7420738134810,672,66899572740,368588220,228227900600700,216090000,304250263527210 %N A324887 a(n) = A108951(n) * A276086(A108951(n)). %H A324887 Antti Karttunen, <a href="/A324887/b324887.txt">Table of n, a(n) for n = 1..210</a> %H A324887 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A324887 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A324887 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A324887 a(n) = A324580(A108951(n)) = A108951(n) * A324886(n). %o A324887 (PARI) %o A324887 A034386(n) = prod(i=1, primepi(n), prime(i)); %o A324887 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 %o A324887 A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; %o A324887 A324886(n) = A276086(A108951(n)); %o A324887 A324887(n) = (A324886(n)*A108951(n)); %Y A324887 Cf. A034386, A108951, A276086, A324580, A324886, A324888. %Y A324887 Permutation of A324577. %K A324887 nonn %O A324887 1,1 %A A324887 _Antti Karttunen_, Mar 30 2019