This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324891 #13 Mar 29 2019 08:02:57 %S A324891 1,1,1,1,6,1,1,1,1,6,1,1,14,1,6,1,18,1,1,6,1,1,1,1,31,14,1,1,30,6,1,1, %T A324891 1,18,6,1,38,1,14,6,42,1,1,1,6,1,1,1,1,31,18,14,54,1,6,1,1,30,1,6,62, %U A324891 1,1,1,84,1,1,18,1,6,1,1,74,38,31,1,1,14,1,6,1,42,1,1,108,1,30,1,90,6,14,1,1,1,6,1,98,1,1,31,102,18,1,14,6 %N A324891 a(n) = sigma(A170818(n)), where A170818(n) is the part of n composed of prime factors of form 4k+1. %H A324891 Antti Karttunen, <a href="/A324891/b324891.txt">Table of n, a(n) for n = 1..20000</a> %H A324891 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A324891 Multiplicative with a(p^e) = (p^(e+1) - 1)/(p-1) if p == 1 (mod 4), otherwise a(p^e) = 1. %F A324891 a(n) = A000203(A170818(n)). %F A324891 a(n) = A000593(n) / A324893(n). %o A324891 (PARI) A324891(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4>1, 1, ((f[i,1]^(1+f[i,2]))-1)/(f[i,1]-1))); }; %o A324891 (PARI) %o A324891 A170818(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4>1, 1, f[i, 1])^f[i, 2]); }; \\ From A170818 %o A324891 A324891(n) = sigma(A170818(n)); %Y A324891 Cf. A000203, A000593, A170818, A324893. %K A324891 nonn,mult %O A324891 1,5 %A A324891 _Antti Karttunen_, Mar 27 2019