This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324893 #13 Mar 31 2019 02:34:00 %S A324893 1,1,4,1,1,4,8,1,13,1,12,4,1,8,4,1,1,13,20,1,32,12,24,4,1,1,40,8,1,4, %T A324893 32,1,48,1,8,13,1,20,4,1,1,32,44,12,13,24,48,4,57,1,4,1,1,40,12,8,80, %U A324893 1,60,4,1,32,104,1,1,48,68,1,96,8,72,13,1,1,4,20,96,4,80,1,121,1,84,32,1,44,4,12,1,13,8,24,128,48,20,4,1,57,156,1,1,4 %N A324893 a(n) = sigma(A097706(n)), where A097706(n) is the part of n composed of prime factors of form 4k+3. %H A324893 Antti Karttunen, <a href="/A324893/b324893.txt">Table of n, a(n) for n = 1..20000</a> %H A324893 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A324893 Multiplicative with a(p^e) = (p^(e+1) - 1)/(p-1) if p == 3 (mod 4), otherwise a(p^e) = 1. %F A324893 a(n) = A000203(A097706(n)). %F A324893 a(n) = A000593(n) / A324891(n). %t A324893 Array[DivisorSigma[1, Times @@ Power @@@ Select[FactorInteger[#], Mod[#[[1]], 4] == 3 &]] &, 102] (* _Michael De Vlieger_, Mar 30 2019 *) %o A324893 (PARI) A324893(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4<3, 1, ((f[i,1]^(1+f[i,2]))-1)/(f[i,1]-1))); }; %o A324893 (PARI) %o A324893 A097706(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4<3, 1, f[i, 1])^f[i, 2]); }; %o A324893 A324893(n) = sigma(A097706(n)); %Y A324893 Cf. A000203, A000593, A097706, A324891. %K A324893 nonn,mult %O A324893 1,3 %A A324893 _Antti Karttunen_, Mar 27 2019