This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324896 #5 Mar 31 2019 00:17:01 %S A324896 1,1,1,3,1,5,1,5,7,7,1,125,1,11,16807,75,1,245,1,343,161051,13,1,175, %T A324896 102487,17,11,1331,1,26411,1,7,371293,19,3293331899,300125,1,23, %U A324896 1419857,11,1,13,1,2197,161051,29,1,343,82055753,73525096183,2476099,4913,1,605,634933,19487171,6436343,31,1,65219,1,37,265837,147 %N A324896 Largest proper divisor of A324886(n). %H A324896 Antti Karttunen, <a href="/A324896/b324896.txt">Table of n, a(n) for n = 1..2310</a> %H A324896 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A324896 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A324896 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A324896 a(n) = A032742(A324886(n)) = A324895(A108951(n)). %o A324896 (PARI) %o A324896 A034386(n) = prod(i=1, primepi(n), prime(i)); %o A324896 A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1])); %o A324896 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 %o A324896 A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; %o A324896 A324886(n) = A276086(A108951(n)); %o A324896 A324896(n) = A032742(A324886(n)); %Y A324896 Cf. A032742, A108951, A276086, A324886, A324895. %K A324896 nonn %O A324896 1,4 %A A324896 _Antti Karttunen_, Mar 30 2019