This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324911 #7 Apr 14 2019 17:23:07 %S A324911 1,1,2,3,4,2,8,7,6,4,16,6,32,8,8,15,64,6,128,12,16,16,256,14,12,32,14, %T A324911 24,512,8,1024,31,32,64,32,18,2048,128,64,28,4096,16,8192,48,24,256, %U A324911 16384,30,24,12,128,96,32768,14,64,56,256,512,65536,24,131072,1024,48,63,128,32,262144,192,512,32,524288,42,1048576,2048,24,384 %N A324911 Multiplicative with a(p^e) = A156552(p^e). %H A324911 Antti Karttunen, <a href="/A324911/b324911.txt">Table of n, a(n) for n = 1..4096</a> %H A324911 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A324911 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %e A324911 For n = 900 = 2^2 * 3^2 * 5^2, a(900) = A156552(4) * A156552(9) * A156552(25) = 3*6*12 = 216. %o A324911 (PARI) %o A324911 A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; \\ From A156552 %o A324911 A324911(n) = { my(f=factor(n)); prod(i=1, #f~, A156552(f[i,1]^f[i,2])); }; %Y A324911 Cf. A156552, A324910, A324912. %Y A324911 Cf. also A324106. %K A324911 nonn,mult %O A324911 1,3 %A A324911 _Antti Karttunen_, Apr 14 2019