cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324922 a(n) = unique m such that m/A003963(m) = n, where A003963 is product of prime indices.

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 28, 8, 36, 60, 330, 24, 156, 56, 180, 16, 476, 72, 152, 120, 168, 660, 828, 48, 900, 312, 216, 112, 1740, 360, 10230, 32, 1980, 952, 840, 144, 888, 304, 936, 240, 6396, 336, 2408, 1320, 1080, 1656, 8460, 96, 784, 1800, 2856, 624, 848, 432
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2019

Keywords

Comments

Every positive integer has a unique factorization into factors q(i) = prime(i)/i, i > 0 given by the rows of A324924. Then a(n) is the number obtained by encoding this factorization as a standard factorization into prime numbers (A112798).

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    difac[n_]:=If[n==1,{},With[{m=Product[Prime[i]/i,{i,primeMS[n]}]},Sort[Join[primeMS[n],difac[n/m]]]]];
    Table[Times@@Prime/@difac[n],{n,30}]
  • PARI
    a(n) = my (f=factor(n)); prod (i=1, #f~, (f[i,1] * a(primepi(f[i,1])))^f[i,2]) \\ Rémy Sigrist, Jul 18 2019

Formula

a(n) = Product_t mg(t) where the product is over all (not necessarily distinct) terminal subtrees of the rooted tree with Matula-Goebel number n, and mg(t) is the Matula-Goebel number of t.
Completely multiplicative with a(prime(n)) = prime(n) * a(n). - Rémy Sigrist, Jul 18 2019

Extensions

Keyword mult added by Rémy Sigrist, Jul 18 2019