cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324924 Irregular triangle read by rows giving the factorization of n into factors q(i) = prime(i)/i, i > 0.

This page as a plain text file.
%I A324924 #6 Mar 21 2019 17:21:45
%S A324924 1,1,2,1,1,1,2,3,1,1,2,1,1,4,1,1,1,1,1,2,2,1,1,2,3,1,2,3,5,1,1,1,2,1,
%T A324924 1,2,6,1,1,1,4,1,1,2,2,3,1,1,1,1,1,1,4,7,1,1,1,2,2,1,1,1,8,1,1,1,2,3,
%U A324924 1,1,1,2,4,1,1,2,3,5,1,1,2,2,9
%N A324924 Irregular triangle read by rows giving the factorization of n into factors q(i) = prime(i)/i, i > 0.
%C A324924 Row n is the multiset of Matula-Goebel numbers of all proper terminal subtrees of the rooted tree with Matula-Goebel number n. For example, the rooted tree with Matula-Goebel number 1362 is (o(o)((oo)(oo))), with proper terminal subtrees {o,o,o,o,o,o,(o),(oo),(oo),((oo)(oo))}, which have Matula-Goebel numbers {1,1,1,1,1,1,2,4,4,49}, which is row 1362, as required.
%e A324924 Triangle begins:
%e A324924   {}
%e A324924   1
%e A324924   1  2
%e A324924   1  1
%e A324924   1  2  3
%e A324924   1  1  2
%e A324924   1  1  4
%e A324924   1  1  1
%e A324924   1  1  2  2
%e A324924   1  1  2  3
%e A324924   1  2  3  5
%e A324924   1  1  1  2
%e A324924   1  1  2  6
%e A324924   1  1  1  4
%e A324924   1  1  2  2  3
%e A324924   1  1  1  1
%e A324924   1  1  4  7
%e A324924   1  1  1  2  2
%e A324924   1  1  1  8
%e A324924   1  1  1  2  3
%e A324924   1  1  1  2  4
%e A324924   1  1  2  3  5
%e A324924   1  1  2  2  9
%e A324924 For example, row 65 is {1,1,1,2,2,3,6} because 65 = q(1)^3 q(2)^2 q(3) q(6).
%t A324924 difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
%t A324924 Table[difac[n],{n,30}]
%Y A324924 Cf. A000081, A003963, A061775, A109082, A109129, A112798, A120383, A196050, A317713, A324850, A324922, A324923, A324925, A324931, A324934.
%K A324924 nonn,tabf
%O A324924 1,3
%A A324924 _Gus Wiseman_, Mar 20 2019