cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324925 Number of integer partitions y of n such that Product_{i in y} prime(i)/i is an integer.

This page as a plain text file.
%I A324925 #5 Mar 21 2019 17:21:52
%S A324925 1,1,1,2,2,2,5,5,5,8,9,11,17,19,21,28,32,40,51,57,67,83,96,118,142,
%T A324925 160,189,224,260,307,363,412,479,561,649,749,874,997,1141,1321,1518,
%U A324925 1734,1994,2274,2582,2960,3374,3837,4370,4950,5604,6371,7208,8157,9231,10392
%N A324925 Number of integer partitions y of n such that Product_{i in y} prime(i)/i is an integer.
%C A324925 The Heinz numbers of these integer partitions are given by A324850.
%e A324925 The a(1) = 1 through a(8) = 5 integer partitions:
%e A324925   (1)  (11)  (21)   (211)   (2111)   (321)     (3211)     (32111)
%e A324925              (111)  (1111)  (11111)  (411)     (4111)     (41111)
%e A324925                                      (2211)    (22111)    (221111)
%e A324925                                      (21111)   (211111)   (2111111)
%e A324925                                      (111111)  (1111111)  (11111111)
%e A324925 For example, (3,2,1,1) is such a partition because (2/1) * (2/1) * (3/2) * (5/3) = 10 is an integer.
%t A324925 Table[Length[Select[IntegerPartitions[n],IntegerQ[Product[Prime[i]/i,{i,#}]]&]],{n,0,30}]
%Y A324925 Cf. A003963, A109129, A324850, A324922, A324923, A324924, A324931, A324934.
%K A324925 nonn
%O A324925 0,4
%A A324925 _Gus Wiseman_, Mar 20 2019