This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324925 #5 Mar 21 2019 17:21:52 %S A324925 1,1,1,2,2,2,5,5,5,8,9,11,17,19,21,28,32,40,51,57,67,83,96,118,142, %T A324925 160,189,224,260,307,363,412,479,561,649,749,874,997,1141,1321,1518, %U A324925 1734,1994,2274,2582,2960,3374,3837,4370,4950,5604,6371,7208,8157,9231,10392 %N A324925 Number of integer partitions y of n such that Product_{i in y} prime(i)/i is an integer. %C A324925 The Heinz numbers of these integer partitions are given by A324850. %e A324925 The a(1) = 1 through a(8) = 5 integer partitions: %e A324925 (1) (11) (21) (211) (2111) (321) (3211) (32111) %e A324925 (111) (1111) (11111) (411) (4111) (41111) %e A324925 (2211) (22111) (221111) %e A324925 (21111) (211111) (2111111) %e A324925 (111111) (1111111) (11111111) %e A324925 For example, (3,2,1,1) is such a partition because (2/1) * (2/1) * (3/2) * (5/3) = 10 is an integer. %t A324925 Table[Length[Select[IntegerPartitions[n],IntegerQ[Product[Prime[i]/i,{i,#}]]&]],{n,0,30}] %Y A324925 Cf. A003963, A109129, A324850, A324922, A324923, A324924, A324931, A324934. %K A324925 nonn %O A324925 0,4 %A A324925 _Gus Wiseman_, Mar 20 2019