cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324926 Numbers not divisible by any prime indices of their prime indices.

This page as a plain text file.
%I A324926 #10 Apr 14 2021 05:24:43
%S A324926 1,2,4,5,8,11,16,17,22,23,25,31,32,34,41,44,47,55,59,62,64,67,73,82,
%T A324926 83,85,88,97,103,109,115,118,121,124,125,127,128,134,137,149,157,164,
%U A324926 166,167,176,179,187,191,194,197,205,211,218,227,233,235,236,241,242
%N A324926 Numbers not divisible by any prime indices of their prime indices.
%C A324926 A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 55 are {3,5} with prime indices {{2},{3}}. Since 55 is not divisible by 2 or 3, it belongs to the sequence.
%H A324926 Amiram Eldar, <a href="/A324926/b324926.txt">Table of n, a(n) for n = 1..10000</a>
%e A324926 The sequence of multisets of multisets whose MM-numbers (see A302242) belong to the sequence begins:
%e A324926    1: {}
%e A324926    2: {{}}
%e A324926    4: {{},{}}
%e A324926    5: {{2}}
%e A324926    8: {{},{},{}}
%e A324926   11: {{3}}
%e A324926   16: {{},{},{},{}}
%e A324926   17: {{4}}
%e A324926   22: {{},{3}}
%e A324926   23: {{2,2}}
%e A324926   25: {{2},{2}}
%e A324926   31: {{5}}
%e A324926   32: {{},{},{},{},{}}
%e A324926   34: {{},{4}}
%e A324926   41: {{6}}
%e A324926   44: {{},{},{3}}
%e A324926   47: {{2,3}}
%e A324926   55: {{2},{3}}
%e A324926   59: {{7}}
%e A324926   62: {{},{5}}
%e A324926   64: {{},{},{},{},{},{}}
%t A324926 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A324926 Select[Range[100],And@@Table[!Divisible[#,i],{i,Union@@primeMS/@primeMS[#]}]&]
%Y A324926 Cf. A001222, A003963, A112798, A120383, A302242, A304360, A324846, A324847, A324848, A324849, A324850, A324927, A324928, A324930.
%K A324926 nonn
%O A324926 1,2
%A A324926 _Gus Wiseman_, Mar 21 2019