This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324927 #5 Mar 21 2019 17:22:06 %S A324927 3,6,7,9,12,14,18,19,21,24,27,28,36,38,42,48,49,53,54,56,57,63,72,76, %T A324927 81,84,96,98,106,108,112,114,126,131,133,144,147,152,159,162,168,171, %U A324927 189,192,196,212,216,224,228,243,252,262,266,288,294,304,311,318 %N A324927 Matula-Goebel numbers of rooted trees of depth 2. Numbers that are not powers of 2 but whose prime indices are all powers of 2. %C A324927 Numbers n such that A109082(n) = 2. %C A324927 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A324927 Also Heinz numbers of integer partitions into powers of 2 with at least one part > 1 (counted by A102378). %e A324927 The sequence of terms together with their prime indices begins: %e A324927 3: {2} %e A324927 6: {1,2} %e A324927 7: {4} %e A324927 9: {2,2} %e A324927 12: {1,1,2} %e A324927 14: {1,4} %e A324927 18: {1,2,2} %e A324927 19: {8} %e A324927 21: {2,4} %e A324927 24: {1,1,1,2} %e A324927 27: {2,2,2} %e A324927 28: {1,1,4} %e A324927 36: {1,1,2,2} %e A324927 38: {1,8} %e A324927 42: {1,2,4} %e A324927 48: {1,1,1,1,2} %e A324927 49: {4,4} %e A324927 53: {16} %e A324927 54: {1,2,2,2} %e A324927 56: {1,1,1,4} %t A324927 Select[Range[100],And[!IntegerQ[Log[2,#]],And@@Cases[FactorInteger[#],{p_,_}:>IntegerQ[Log[2,PrimePi[p]]]]]&] %Y A324927 Cf. A000081, A000720, A003963, A007097, A018819, A033844, A056239, A102378, A112798, A302242, A318400, A324928, A324929. %K A324927 nonn %O A324927 1,1 %A A324927 _Gus Wiseman_, Mar 21 2019