This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324935 #5 Mar 22 2019 00:33:01 %S A324935 1,2,3,4,5,6,7,8,10,11,12,13,14,16,17,19,20,21,22,24,26,28,29,31,32, %T A324935 34,35,37,38,40,41,42,43,44,48,51,52,53,56,57,58,59,62,64,67,68,70,71, %U A324935 73,74,76,77,79,80,82,84,85,86,88,89,91,95,96,101,102,104 %N A324935 Matula-Goebel numbers of rooted trees whose non-leaf terminal subtrees are all different. %C A324935 Every positive integer has a unique factorization into factors q(i) = prime(i)/i, i > 0. This sequence consists of all numbers where this factorization has all distinct factors, except possibly for any multiplicity of q(1). For example, 22 = q(1)^2 q(2) q(3) q(5) is in the sequence, while 50 = q(1)^3 q(2)^2 q(3)^2 is not. %C A324935 The enumeration of these trees by number of vertices is A324936. %H A324935 Gus Wiseman, <a href="/A324935/a324935.png">The first 36 rooted trees whose non-leaf terminal subtrees are all different, together with their Matula-Goebel numbers</a>. %e A324935 The sequence of trees together with their Matula-Goebel numbers begins: %e A324935 1: o %e A324935 2: (o) %e A324935 3: ((o)) %e A324935 4: (oo) %e A324935 5: (((o))) %e A324935 6: (o(o)) %e A324935 7: ((oo)) %e A324935 8: (ooo) %e A324935 10: (o((o))) %e A324935 11: ((((o)))) %e A324935 12: (oo(o)) %e A324935 13: ((o(o))) %e A324935 14: (o(oo)) %e A324935 16: (oooo) %e A324935 17: (((oo))) %e A324935 19: ((ooo)) %e A324935 20: (oo((o))) %e A324935 21: ((o)(oo)) %e A324935 22: (o(((o)))) %e A324935 24: (ooo(o)) %e A324935 26: (o(o(o))) %e A324935 28: (oo(oo)) %e A324935 29: ((o((o)))) %e A324935 31: (((((o))))) %t A324935 difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]]; %t A324935 Select[Range[100],UnsameQ@@DeleteCases[difac[#],1]&] %Y A324935 Cf. A000081, A004111, A007097, A061775, A196050, A276625, A290822, A317713. %Y A324935 Cf. A324850, A324922, A324923, A324924, A324931, A324934, A324936. %K A324935 nonn %O A324935 1,2 %A A324935 _Gus Wiseman_, Mar 21 2019