cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324936 Number of unlabeled rooted trees with n vertices whose non-leaf terminal subtrees are all different.

This page as a plain text file.
%I A324936 #4 Mar 22 2019 00:33:08
%S A324936 1,1,2,4,8,17,37,83,189,436,1014,2373,5578,13156,31104,73665,174665,
%T A324936 414427,983606,2334488
%N A324936 Number of unlabeled rooted trees with n vertices whose non-leaf terminal subtrees are all different.
%C A324936 The Matula-Goebel numbers of these trees are given by A324935.
%e A324936 The a(1) = 1 through a(6) = 17 trees:
%e A324936   o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
%e A324936           ((o))  ((oo))   ((ooo))    ((oooo))
%e A324936                  (o(o))   (o(oo))    (o(ooo))
%e A324936                  (((o)))  (oo(o))    (oo(oo))
%e A324936                           (((oo)))   (ooo(o))
%e A324936                           ((o(o)))   (((ooo)))
%e A324936                           (o((o)))   ((o)(oo))
%e A324936                           ((((o))))  ((o(oo)))
%e A324936                                      ((oo(o)))
%e A324936                                      (o((oo)))
%e A324936                                      (o(o(o)))
%e A324936                                      (oo((o)))
%e A324936                                      ((((oo))))
%e A324936                                      (((o(o))))
%e A324936                                      ((o((o))))
%e A324936                                      (o(((o))))
%e A324936                                      (((((o)))))
%t A324936 durt[n_]:=Join@@Table[Select[Union[Sort/@Tuples[durt/@ptn]],UnsameQ@@Cases[#,{__},{0,Infinity}]&],{ptn,IntegerPartitions[n-1]}];
%t A324936 Table[Length[durt[n]],{n,10}]
%Y A324936 Cf. A000081, A004111, A290689, A317713, A324850, A324922, A324923, A324924, A324931, A324935.
%K A324936 nonn,more
%O A324936 1,3
%A A324936 _Gus Wiseman_, Mar 21 2019