This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324968 #6 Mar 22 2019 00:33:28 %S A324968 1,2,3,5,6,10,11,13,22,26,29,31,41,58,62,79,82,101,109,127,158,179, %T A324968 202,218,254,271,293,358,401,421,542,547,586,599,709,802,842,929,1063, %U A324968 1094,1198,1231,1361,1418,1609,1741,1858,1913,2126,2411,2462,2722,2749 %N A324968 Matula-Goebel numbers of rooted identity trees whose non-leaf terminal subtrees are all different. %C A324968 A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root. This sequence ranks rooted identity trees satisfying the additional condition that all non-leaf terminal subtrees are different. %H A324968 Gus Wiseman, <a href="/A324968/a324968.png">The first 36 trees together with their Matula-Goebel numbers</a>. %F A324968 Intersection of A324935 and A276625. %e A324968 The sequence of trees together with the Matula-Goebel numbers begins: %e A324968 1: o %e A324968 2: (o) %e A324968 3: ((o)) %e A324968 5: (((o))) %e A324968 6: (o(o)) %e A324968 10: (o((o))) %e A324968 11: ((((o)))) %e A324968 13: ((o(o))) %e A324968 22: (o(((o)))) %e A324968 26: (o(o(o))) %e A324968 29: ((o((o)))) %e A324968 31: (((((o))))) %e A324968 41: (((o(o)))) %e A324968 58: (o(o((o)))) %e A324968 62: (o((((o))))) %e A324968 79: ((o(((o))))) %e A324968 82: (o((o(o)))) %e A324968 101: ((o(o(o)))) %e A324968 109: (((o((o))))) %e A324968 127: ((((((o)))))) %t A324968 mgtree[n_Integer]:=If[n==1,{},mgtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A324968 Select[Range[100],And[And@@Cases[mgtree[#],q:{__}:>UnsameQ@@q,{0,Infinity}],UnsameQ@@Cases[mgtree[#],{__},{0,Infinity}]]&] %Y A324968 Cf. A000081, A004111, A007097, A196050, A276625, A317713, A324850, A324923, A324935, A324936, A324969, A324970, A324978. %K A324968 nonn %O A324968 1,2 %A A324968 _Gus Wiseman_, Mar 21 2019