This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324970 #7 Mar 22 2019 00:33:41 %S A324970 15,30,33,39,47,55,65,66,78,87,93,94,110,113,123,130,137,141,143,145, %T A324970 155,165,167,174,186,195,205,211,226,235,237,246,257,274,282,286,290, %U A324970 303,310,313,317,319,327,330,334,339,341,377,381,390,395,397,403,410 %N A324970 Matula-Goebel numbers of rooted identity trees where not all terminal subtrees are different. %C A324970 A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root. %H A324970 Gus Wiseman, <a href="/A324970/a324970.png">The first 36 trees together with their Matula-Goebel numbers</a>. %F A324970 Complement of A324935 in A276625. %e A324970 The sequence of trees together with the Matula-Goebel numbers begins: %e A324970 15: ((o)((o))) %e A324970 30: (o(o)((o))) %e A324970 33: ((o)(((o)))) %e A324970 39: ((o)(o(o))) %e A324970 47: (((o)((o)))) %e A324970 55: (((o))(((o)))) %e A324970 65: (((o))(o(o))) %e A324970 66: (o(o)(((o)))) %e A324970 78: (o(o)(o(o))) %e A324970 87: ((o)(o((o)))) %e A324970 93: ((o)((((o))))) %e A324970 94: (o((o)((o)))) %e A324970 110: (o((o))(((o)))) %e A324970 113: ((o(o)((o)))) %e A324970 123: ((o)((o(o)))) %e A324970 130: (o((o))(o(o))) %e A324970 137: (((o)(((o))))) %e A324970 141: ((o)((o)((o)))) %e A324970 143: ((((o)))(o(o))) %e A324970 145: (((o))(o((o)))) %e A324970 155: (((o))((((o))))) %e A324970 165: ((o)((o))(((o)))) %e A324970 167: (((o)(o(o)))) %e A324970 174: (o(o)(o((o)))) %e A324970 186: (o(o)((((o))))) %e A324970 195: ((o)((o))(o(o))) %t A324970 mgtree[n_Integer]:=If[n==1,{},mgtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A324970 Select[Range[100],And[And@@Cases[mgtree[#],q:{__}:>UnsameQ@@q,{0,Infinity}],!UnsameQ@@Cases[mgtree[#],{__},{0,Infinity}]]&] %Y A324970 Cf. A000081, A004111, A007097, A196050, A276625, A317713, A324850, A324923, A324935, A324936, A324968, A324971, A324978. %K A324970 nonn %O A324970 1,1 %A A324970 _Gus Wiseman_, Mar 21 2019