cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324971 Number of rooted identity trees with n vertices whose non-leaf terminal subtrees are not all different.

This page as a plain text file.
%I A324971 #6 Mar 22 2019 00:33:48
%S A324971 0,0,0,0,0,1,4,12,31,79,192,459,1082,2537,5922,13816,32222,75254,
%T A324971 176034,412667,969531,2283278
%N A324971 Number of rooted identity trees with n vertices whose non-leaf terminal subtrees are not all different.
%C A324971 A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root.
%e A324971 The a(6) = 1 through a(8) = 12 trees:
%e A324971   ((o)((o)))  ((o)(o(o)))   (o(o)(o(o)))
%e A324971               (o(o)((o)))   (((o))(o(o)))
%e A324971               (((o)((o))))  (((o)(o(o))))
%e A324971               ((o)(((o))))  ((o)((o(o))))
%e A324971                             ((o)(o((o))))
%e A324971                             ((o(o)((o))))
%e A324971                             (o((o)((o))))
%e A324971                             (o(o)(((o))))
%e A324971                             ((((o)((o)))))
%e A324971                             (((o))(((o))))
%e A324971                             (((o)(((o)))))
%e A324971                             ((o)((((o)))))
%t A324971 rits[n_]:=Join@@Table[Select[Union[Sort/@Tuples[rits/@ptn]],UnsameQ@@#&],{ptn,IntegerPartitions[n-1]}];
%t A324971 Table[Length[Select[rits[n],!UnsameQ@@Cases[#,{__},{0,Infinity}]&]],{n,10}]
%Y A324971 The Matula-Goebel numbers of these trees are given by A324970.
%Y A324971 Cf. A000081, A004111, A290689, A317713, A324850, A324922, A324923, A324924, A324931, A324935, A324936, A324979.
%K A324971 nonn,more
%O A324971 1,7
%A A324971 _Gus Wiseman_, Mar 21 2019