This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324971 #6 Mar 22 2019 00:33:48 %S A324971 0,0,0,0,0,1,4,12,31,79,192,459,1082,2537,5922,13816,32222,75254, %T A324971 176034,412667,969531,2283278 %N A324971 Number of rooted identity trees with n vertices whose non-leaf terminal subtrees are not all different. %C A324971 A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root. %e A324971 The a(6) = 1 through a(8) = 12 trees: %e A324971 ((o)((o))) ((o)(o(o))) (o(o)(o(o))) %e A324971 (o(o)((o))) (((o))(o(o))) %e A324971 (((o)((o)))) (((o)(o(o)))) %e A324971 ((o)(((o)))) ((o)((o(o)))) %e A324971 ((o)(o((o)))) %e A324971 ((o(o)((o)))) %e A324971 (o((o)((o)))) %e A324971 (o(o)(((o)))) %e A324971 ((((o)((o))))) %e A324971 (((o))(((o)))) %e A324971 (((o)(((o))))) %e A324971 ((o)((((o))))) %t A324971 rits[n_]:=Join@@Table[Select[Union[Sort/@Tuples[rits/@ptn]],UnsameQ@@#&],{ptn,IntegerPartitions[n-1]}]; %t A324971 Table[Length[Select[rits[n],!UnsameQ@@Cases[#,{__},{0,Infinity}]&]],{n,10}] %Y A324971 The Matula-Goebel numbers of these trees are given by A324970. %Y A324971 Cf. A000081, A004111, A290689, A317713, A324850, A324922, A324923, A324924, A324931, A324935, A324936, A324979. %K A324971 nonn,more %O A324971 1,7 %A A324971 _Gus Wiseman_, Mar 21 2019