This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324973 #56 Apr 27 2024 03:35:39 %S A324973 6,15,66,70,91,190,231,435,561,703,715,782,861,946,1045,1105,1426, %T A324973 1653,1729,1770,1785,1794,1891,2035,2278,2465,2701,2821,2926,3059, %U A324973 3290,3367,3486,3655,4371,4641,4830,5005,5083,5151,5365,5551,5565,5995,6441,6545,6601 %N A324973 Special polygonal numbers. %C A324973 Squarefree polygonal numbers P(r,p) = (p^2*(r-2)-p*(r-4))/2 whose greatest prime factor is p >= 3, and whose rank (or order) is r >= 3 (see A324974). %C A324973 The Carmichael numbers A002997 and primary Carmichael numbers A324316 are subsequences. See Kellner and Sondow 2019. %H A324973 Amiram Eldar, <a href="/A324973/b324973.txt">Table of n, a(n) for n = 1..10000</a> %H A324973 Bernd C. Kellner and Jonathan Sondow, <a href="http://math.colgate.edu/~integers/v52/v52.pdf">On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits</a>, Integers 21 (2021), #A52, 21 pp.; <a href="https://arxiv.org/abs/1902.10672">arXiv preprint</a>, arXiv:1902.10672 [math.NT], 2019-2021. %H A324973 Bernd C. Kellner, <a href="http://math.colgate.edu/~integers/w38/w38.pdf">On primary Carmichael numbers</a>, Integers 22 (2022), #A38, 39 pp.; <a href="https://arxiv.org/abs/1902.11283">arXiv preprint</a>, arXiv:1902.11283 [math.NT], 2019-2022. %H A324973 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>. %e A324973 P(3,5) = 15 is squarefree, and its greatest prime factor is 5, so 15 is a member. %e A324973 More generally, if p is an odd prime and P(3,p) is squarefree, then P(3,p) is a member, since P(3,p) = (p^2+p)/2 = p*(p+1)/2, so p is its greatest prime factor. %e A324973 CAUTION: P(6,7) = 91 = 7*13 is a member even though 7 is NOT its greatest prime factor, as P(6,7) = P(3,13) and 13 is its greatest prime factor. %t A324973 GPF[n_] := Last[Select[Divisors[n], PrimeQ]]; %t A324973 T = Select[Flatten[Table[{p, (p^2*(r - 2) - p*(r - 4))/2}, {p, 3, 150}, {r, 3, 100}], 1], SquareFreeQ[Last[#]] && First[#] == GPF[Last[#]] &]; %t A324973 Take[Union[Table[Last[t], {t, T}]], 47] %o A324973 (PARI) is(k) = if(issquarefree(k) && k>1, my(p=vecmax(factor(k)[, 1]), r); p>2 && (r=2*(k/p-1)/(p-1)) && denominator(r)==1, 0); \\ _Jinyuan Wang_, Feb 18 2021 %Y A324973 Subsequence of A324972 = intersection of A005117 and A090466. %Y A324973 A002997, A324316, A324319 and A324320 are subsequences. %Y A324973 Cf. A324974, A324975, A324976. %K A324973 nonn %O A324973 1,1 %A A324973 _Bernd C. Kellner_ and _Jonathan Sondow_, Mar 21 2019 %E A324973 Several missing terms inserted by _Jinyuan Wang_, Feb 18 2021