This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324978 #6 Mar 22 2019 00:33:56 %S A324978 4,7,8,12,14,16,17,19,20,21,24,28,32,34,35,37,38,40,42,43,44,48,51,52, %T A324978 53,56,57,59,64,67,68,70,71,73,74,76,77,80,84,85,86,88,89,91,95,96, %U A324978 102,104,106,107,112,114,116,118,124,128,129,131,133,134,136,139 %N A324978 Matula-Goebel numbers of rooted trees that are not identity trees but whose non-leaf terminal subtrees are all different. %C A324978 An unlabeled rooted tree is an identity tree if there are no repeated branches directly under the same root. %H A324978 Gus Wiseman, <a href="/A324978/a324978.png">The first 36 trees together with their Matula-Goebel numbers</a>. %F A324978 Complement of A276625 in A324935. %e A324978 The sequence of trees together with the Matula-Goebel numbers begins: %e A324978 4: (oo) %e A324978 7: ((oo)) %e A324978 8: (ooo) %e A324978 12: (oo(o)) %e A324978 14: (o(oo)) %e A324978 16: (oooo) %e A324978 17: (((oo))) %e A324978 19: ((ooo)) %e A324978 20: (oo((o))) %e A324978 21: ((o)(oo)) %e A324978 24: (ooo(o)) %e A324978 28: (oo(oo)) %e A324978 32: (ooooo) %e A324978 34: (o((oo))) %e A324978 35: (((o))(oo)) %e A324978 37: ((oo(o))) %e A324978 38: (o(ooo)) %e A324978 40: (ooo((o))) %e A324978 42: (o(o)(oo)) %e A324978 43: ((o(oo))) %t A324978 mgtree[n_]:=If[n==1,{},mgtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A324978 Select[Range[100],And[!And@@Cases[mgtree[#],q:{__}:>UnsameQ@@q,{0,Infinity}],UnsameQ@@Cases[mgtree[#],{__},{0,Infinity}]]&] %Y A324978 Cf. A000081, A004111, A007097, A196050, A276625, A317713, A324850, A324923, A324935, A324936, A324968, A324969, A324970, A324971, A324979. %K A324978 nonn %O A324978 1,1 %A A324978 _Gus Wiseman_, Mar 21 2019