This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324979 #4 Mar 22 2019 00:34:02 %S A324979 0,0,1,2,5,12,29,70,168,402,959,2284,5434,12923,30727,73055,173678, %T A324979 412830 %N A324979 Number of rooted trees with n vertices that are not identity trees but whose non-leaf terminal subtrees are all different. %C A324979 An unlabeled rooted tree is an identity tree if there are no repeated branches directly under the same root. %e A324979 The a(3) = 1 through a(6) = 12 trees: %e A324979 (oo) (ooo) (oooo) (ooooo) %e A324979 ((oo)) ((ooo)) ((oooo)) %e A324979 (o(oo)) (o(ooo)) %e A324979 (oo(o)) (oo(oo)) %e A324979 (((oo))) (ooo(o)) %e A324979 (((ooo))) %e A324979 ((o)(oo)) %e A324979 ((o(oo))) %e A324979 ((oo(o))) %e A324979 (o((oo))) %e A324979 (oo((o))) %e A324979 ((((oo)))) %t A324979 rits[n_]:=Join@@Table[Union[Sort/@Tuples[rits/@ptn]],{ptn,IntegerPartitions[n-1]}]; %t A324979 Table[Length[Select[rits[n],And[UnsameQ@@Cases[#,{__},{0,Infinity}],!And@@Cases[mgtree[#],q:{__}:>UnsameQ@@q,{0,Infinity}]]&]],{n,10}] %Y A324979 The Matula-Goebel numbers of these trees are given by A324978. %Y A324979 Cf. A000081, A004111, A290689, A317713, A324850, A324922, A324923, A324924, A324931, A324935, A324936, A324970, A324971. %K A324979 nonn,more %O A324979 1,4 %A A324979 _Gus Wiseman_, Mar 21 2019