cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324980 a(n) = Product_{d|n} (d*sigma(d)) where sigma(k) = the sum of the divisors of k (A000203).

This page as a plain text file.
%I A324980 #13 Sep 08 2022 08:46:24
%S A324980 1,6,12,168,30,5184,56,20160,1404,32400,132,48771072,182,112896,
%T A324980 129600,9999360,306,425782656,380,762048000,451584,627264,552,
%U A324980 8427641241600,23250,1192464,1516320,4956585984,870,21767823360000,992,20158709760,2509056,3370896
%N A324980 a(n) = Product_{d|n} (d*sigma(d)) where sigma(k) = the sum of the divisors of k (A000203).
%F A324980 a(n) = (Product_{d|n} d) * (Product_{d|n} sigma(d)) = A007955(n) * A206032(n).
%F A324980 a(p) = p*(p+1) for p = primes (A000040).
%e A324980 a(6) = 1*sigma(1) * 2*sigma(2) * 3*sigma(3) * 6*sigma(6) = (1*1) * (2*3) * (3*4) * (6*12) = 5184.
%t A324980 Array[Times @@ Map[# DivisorSigma[1, #] &, Divisors@ #] &, 34] (* _Michael De Vlieger_, Mar 24 2019 *)
%o A324980 (Magma) [&*[d * SumOfDivisors(d): d in Divisors(n)]: n in [1..100]]
%o A324980 (PARI) a(n) = my(p=1); fordiv(n, d, p *= d*sigma(d)); p; \\ _Michel Marcus_, Mar 22 2019
%Y A324980 Cf. A000203, A001001 (Sum_{d|n} (d*sigma(d))), A206032.
%K A324980 nonn
%O A324980 1,2
%A A324980 _Jaroslav Krizek_, Mar 22 2019