This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325006 #12 Oct 01 2019 07:16:37 %S A325006 0,1,0,3,0,0,6,3,0,0,10,15,1,0,0,15,45,20,0,0,0,21,105,120,15,0,0,0, %T A325006 28,210,455,210,6,0,0,0,36,378,1330,1365,252,1,0,0,0,45,630,3276,5985, %U A325006 3003,210,0,0,0,0,55,990,7140,20475,20349,5005,120,0,0,0,0,66,1485,14190,58905,98280,54264,6435,45,0,0,0,0 %N A325006 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors. %C A325006 Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. The chiral colorings of its facets come in pairs, each the reflection of the other. %C A325006 Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthoplex using up to k colors. %H A325006 Robert A. Russell, <a href="/A325006/b325006.txt">Table of n, a(n) for n = 1..325</a> %H A325006 Robin Chapman, answer to <a href="https://math.stackexchange.com/q/5732/">Coloring the faces of a hypercube</a>, Math StackExchange, September 30, 2010. %F A325006 A(n,k) = binomial(binomial(k,2),n). %F A325006 A(n,k) = Sum_{j=1..2*n} A325010(n,j) * binomial(k,j). %F A325006 A(n,k) = A325004(n,k) - A325005(n,k) = (A325004(n,k) - A325007(n,k)) / 2 = A325005(n,k) - A325007(n,k). %F A325006 G.f. for row n: Sum{j=1..2*n} A325010(n,j) * x^j / (1-x)^(j+1). %F A325006 Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j). %F A325006 G.f. for column k: (1+x)^binomial(k,2) - 1. %e A325006 Array begins with A(1,1): %e A325006 0 1 3 6 10 15 21 28 36 45 55 ... %e A325006 0 0 3 15 45 105 210 378 630 990 1485 ... %e A325006 0 0 1 20 120 455 1330 3276 7140 14190 26235 ... %e A325006 0 0 0 15 210 1365 5985 20475 58905 148995 341055 ... %e A325006 0 0 0 6 252 3003 20349 98280 376992 1221759 3478761 ... %e A325006 0 0 0 1 210 5005 54264 376740 1947792 8145060 28989675 ... %e A325006 0 0 0 0 120 6435 116280 1184040 8347680 45379620 202927725 ... %e A325006 0 0 0 0 45 6435 203490 3108105 30260340 215553195 1217566350 ... %e A325006 0 0 0 0 10 5005 293930 6906900 94143280 886163135 6358402050 ... %e A325006 0 0 0 0 1 3003 352716 13123110 254186856 3190187286 29248649430 ... %e A325006 For a(2,3)=3, each chiral pair consists of two adjacent edges of the square with one of the three colors. %t A325006 Table[Binomial[Binomial[d-n+1,2],n],{d,1,12},{n,1,d}] // Flatten %o A325006 (PARI) a(n, k) = binomial(binomial(k, 2), n) %o A325006 array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print("")) %o A325006 /* Print initial 10 rows and 11 columns of array as follows: */ %o A325006 array(10, 11) \\ _Felix Fröhlich_, May 30 2019 %Y A325006 Cf. A325004 (oriented), A325005 (unoriented), A325007 (achiral), A325010 (exactly k colors) %Y A325006 Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325014 (orthoplex) %Y A325006 Rows 1-3 are A161680, A050534, A093566(n+1), A234249(n-1) %K A325006 nonn,tabl,easy %O A325006 1,4 %A A325006 _Robert A. Russell_, May 27 2019