cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325006 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors.

This page as a plain text file.
%I A325006 #12 Oct 01 2019 07:16:37
%S A325006 0,1,0,3,0,0,6,3,0,0,10,15,1,0,0,15,45,20,0,0,0,21,105,120,15,0,0,0,
%T A325006 28,210,455,210,6,0,0,0,36,378,1330,1365,252,1,0,0,0,45,630,3276,5985,
%U A325006 3003,210,0,0,0,0,55,990,7140,20475,20349,5005,120,0,0,0,0,66,1485,14190,58905,98280,54264,6435,45,0,0,0,0
%N A325006 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors.
%C A325006 Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. The chiral colorings of its facets come in pairs, each the reflection of the other.
%C A325006 Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.
%H A325006 Robert A. Russell, <a href="/A325006/b325006.txt">Table of n, a(n) for n = 1..325</a>
%H A325006 Robin Chapman, answer to <a href="https://math.stackexchange.com/q/5732/">Coloring the faces of a hypercube</a>, Math StackExchange, September 30, 2010.
%F A325006 A(n,k) = binomial(binomial(k,2),n).
%F A325006 A(n,k) = Sum_{j=1..2*n} A325010(n,j) * binomial(k,j).
%F A325006 A(n,k) = A325004(n,k) - A325005(n,k) = (A325004(n,k) - A325007(n,k)) / 2 = A325005(n,k) - A325007(n,k).
%F A325006 G.f. for row n: Sum{j=1..2*n} A325010(n,j) * x^j / (1-x)^(j+1).
%F A325006 Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).
%F A325006 G.f. for column k: (1+x)^binomial(k,2) - 1.
%e A325006 Array begins with A(1,1):
%e A325006 0 1 3  6  10   15     21       28        36         45          55 ...
%e A325006 0 0 3 15  45  105    210      378       630        990        1485 ...
%e A325006 0 0 1 20 120  455   1330     3276      7140      14190       26235 ...
%e A325006 0 0 0 15 210 1365   5985    20475     58905     148995      341055 ...
%e A325006 0 0 0  6 252 3003  20349    98280    376992    1221759     3478761 ...
%e A325006 0 0 0  1 210 5005  54264   376740   1947792    8145060    28989675 ...
%e A325006 0 0 0  0 120 6435 116280  1184040   8347680   45379620   202927725 ...
%e A325006 0 0 0  0  45 6435 203490  3108105  30260340  215553195  1217566350 ...
%e A325006 0 0 0  0  10 5005 293930  6906900  94143280  886163135  6358402050 ...
%e A325006 0 0 0  0   1 3003 352716 13123110 254186856 3190187286 29248649430 ...
%e A325006 For a(2,3)=3, each chiral pair consists of two adjacent edges of the square with one of the three colors.
%t A325006 Table[Binomial[Binomial[d-n+1,2],n],{d,1,12},{n,1,d}] // Flatten
%o A325006 (PARI) a(n, k) = binomial(binomial(k, 2), n)
%o A325006 array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
%o A325006 /* Print initial 10 rows and 11 columns of array as follows: */
%o A325006 array(10, 11) \\ _Felix Fröhlich_, May 30 2019
%Y A325006 Cf. A325004 (oriented), A325005 (unoriented), A325007 (achiral), A325010 (exactly k colors)
%Y A325006 Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325014 (orthoplex)
%Y A325006 Rows 1-3 are A161680, A050534, A093566(n+1), A234249(n-1)
%K A325006 nonn,tabl,easy
%O A325006 1,4
%A A325006 _Robert A. Russell_, May 27 2019