This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325017 #5 Jun 11 2019 06:09:32 %S A325017 1,1,1,4,6,3,1,20,204,1056,2850,4080,2940,840,1,400,130899,11230666, %T A325017 347919225,5158324560,43174480650,225086553300,775894225050, %U A325017 1831178115900,3008073915000,3439243962000,2685727044000,1366701336000,408648240000,54486432000 %N A325017 Triangle read by rows: T(n,k) is the number of unoriented colorings of the facets of a regular n-dimensional orthoplex using exactly k colors. Row n has 2^n columns. %C A325017 Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. Two unoriented colorings are the same if congruent; chiral pairs are counted as one. %C A325017 Also the number of unoriented colorings of the vertices of a regular n-dimensional orthotope (cube) using exactly k colors. %H A325017 Robert A. Russell, <a href="/A325017/b325017.txt">Table of n, a(n) for n = 1..510</a>, rows 1..8, flattened. %H A325017 E. M. Palmer and R. W. Robinson, <a href="https://projecteuclid.org/euclid.acta/1485889789">Enumeration under two representations of the wreath product</a>, Acta Math., 131 (1973), 123-143. %F A325017 A325013(n,k) = Sum_{j=1..2^n} T(n,j) * binomial(k,j). %F A325017 T(n,k) = A325016(n,k) - A325018(n,k) = (A325016(n,k) + A325019(n,k)) / 2 = A325018(n,k) + A325019(n,k). %e A325017 Triangle begins with T(1,1): %e A325017 1 1 %e A325017 1 4 6 3 %e A325017 1 20 204 1056 2850 4080 2940 840 %e A325017 For T(2,2)=4, two squares have three edges the same color, one has opposite edges the same color, and one has opposite edges different colors. %t A325017 a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&,n,EvenQ],MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *) %t A325017 a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *) %t A325017 CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *) %t A325017 CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, (a37 /@ sub)/2}]]] 2^(n-1); (* odd perm. *) %t A325017 compress[x : {{_, _} ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s) %t A325017 cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]}; %t A325017 Unprotect[Times]; Times[CI[a_List], CI[b_List]] := (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times]; %t A325017 CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]] %t A325017 CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]] %t A325017 pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *) %t A325017 row[n_Integer] := row[n] = Factor[(Total[((CI0[#] + CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]]) %t A325017 array[n_, k_] := row[n] /. j -> k (* A325013 *) %t A325017 Table[LinearSolve[Table[Binomial[i,j],{i,1,2^n},{j,1,2^n}],Table[array[n,k],{k,1,2^n}]],{n,1,6}] // Flatten %Y A325017 Cf. A325016 (oriented), A325018 (chiral), A325019 (achiral), A325013 (up to k colors). %Y A325017 Other n-dimensional polytopes: A007318(n,k-1) (simplex), A325009 (orthotope). %Y A325017 Cf. A000048, A001037. %K A325017 nonn,tabf %O A325017 1,4 %A A325017 _Robert A. Russell_, Jun 09 2019