cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325024 Multiply-perfect numbers m from A007691 such that m*(m-tau(m))/sigma(m) is not an integer where k-tau(k) is the number of the non-divisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).

This page as a plain text file.
%I A325024 #17 May 12 2024 00:45:50
%S A325024 120,523776,459818240,1476304896,31998395520,51001180160,518666803200,
%T A325024 30823866178560,740344994887680,796928461056000,212517062615531520,
%U A325024 69357059049509038080,87934476737668055040,170206605192656148480,1161492388333469337600,1802582780370364661760
%N A325024 Multiply-perfect numbers m from A007691 such that m*(m-tau(m))/sigma(m) is not an integer where k-tau(k) is the number of the non-divisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).
%C A325024 Numbers m such that m divides sigma(m) but sigma(m) does not divide m*(m-tau(m)).
%C A325024 Complement of A325023 with respect to A007691.
%H A325024 Amiram Eldar, <a href="/A325024/b325024.txt">Table of n, a(n) for n = 1..218</a>
%e A325024 120 is a term because 120*(120-tau(120))/sigma(120) = 120*(120-16)/360 = 104/3.
%t A325024 Select[Range[10^6], And[Mod[#3, #1] == 0, !IntegerQ[#1 (#1 - #2)/#3]] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* _Amiram Eldar_, Jul 10 2019 after _Michael De Vlieger_ at A325023 *)
%o A325024 (Magma) [n: n in [1..1000000] | not IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
%o A325024 (PARI) isA325024(m) = { my(s=sigma(m)); ((1==denominator(s/m)) && (1!=denominator(m*(m-numdiv(m))/s))); }; \\ _Antti Karttunen_, May 25 2019
%Y A325024 Cf. A000005, A000203, A007691, A049820, A325020, A325021, A325022, A325023.
%K A325024 nonn
%O A325024 1,1
%A A325024 _Jaroslav Krizek_, May 12 2019