cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325031 Numbers divisible by all prime indices of their prime indices.

This page as a plain text file.
%I A325031 #5 Mar 26 2019 21:05:15
%S A325031 1,2,3,4,6,7,8,9,10,12,14,16,18,19,20,21,24,26,27,28,30,32,33,36,38,
%T A325031 40,42,46,48,49,50,52,53,54,56,57,60,63,64,66,68,70,72,74,76,78,80,81,
%U A325031 84,87,90,92,96,98,99,100,104,106,108,112,114,120,122,126,128
%N A325031 Numbers divisible by all prime indices of their prime indices.
%C A325031 A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 55 are {3,5} with prime indices {{2},{3}}. Since 55 is not divisible by 2 or 3, it does not belong to the sequence.
%e A325031 The sequence of multisets of multisets whose MM-numbers (see A302242) belong to the sequence begins:
%e A325031    1: {}
%e A325031    2: {{}}
%e A325031    3: {{1}}
%e A325031    4: {{},{}}
%e A325031    6: {{},{1}}
%e A325031    7: {{1,1}}
%e A325031    8: {{},{},{}}
%e A325031    9: {{1},{1}}
%e A325031   10: {{},{2}}
%e A325031   12: {{},{},{1}}
%e A325031   14: {{},{1,1}}
%e A325031   16: {{},{},{},{}}
%e A325031   18: {{},{1},{1}}
%e A325031   19: {{1,1,1}}
%e A325031   20: {{},{},{2}}
%e A325031   21: {{1},{1,1}}
%e A325031   24: {{},{},{},{1}}
%e A325031   26: {{},{1,2}}
%e A325031   27: {{1},{1},{1}}
%e A325031   28: {{},{},{1,1}}
%e A325031   30: {{},{1},{2}}
%e A325031   32: {{},{},{},{},{}}
%e A325031   33: {{1},{3}}
%e A325031   36: {{},{},{1},{1}}
%t A325031 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325031 Select[Range[100],And@@Table[Divisible[#,i],{i,Union@@primeMS/@primeMS[#]}]&]
%Y A325031 Cf. A000720, A003963, A112798, A120383, A302242, A320325.
%Y A325031 Cf. A323440, A324846, A324847, A324849, A324850, A324856, A324926, A325032.
%K A325031 nonn
%O A325031 1,2
%A A325031 _Gus Wiseman_, Mar 25 2019