cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325036 Difference between product and sum of prime indices of n.

This page as a plain text file.
%I A325036 #11 May 26 2023 13:15:18
%S A325036 1,0,0,-1,0,-1,0,-2,0,-1,0,-2,0,-1,1,-3,0,-1,0,-2,2,-1,0,-3,3,-1,2,-2,
%T A325036 0,0,0,-4,3,-1,5,-2,0,-1,4,-3,0,1,0,-2,5,-1,0,-4,8,2,5,-2,0,1,7,-3,6,
%U A325036 -1,0,-1,0,-1,8,-5,9,2,0,-2,7,4,0,-3,0,-1,10,-2,11,3,0,-4,8,-1,0,0,11,-1,8,-3,0,4,14,-2,9
%N A325036 Difference between product and sum of prime indices of n.
%C A325036 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H A325036 Antti Karttunen, <a href="/A325036/b325036.txt">Table of n, a(n) for n = 1..20000</a>
%H A325036 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A325036 a(n) = A003963(n) - A056239(n).
%F A325036 For all n >= 1, a(A325040(n)) = a(A122111(A325040(n))). - _Antti Karttunen_, May 08 2022
%e A325036 The prime indices of 45 are {2,2,3}, with product 12 and sum 7, so a(45) = 5.
%t A325036 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325036 Table[Times@@primeMS[n]-Total[primeMS[n]],{n,100}]
%t A325036 dps[n_]:=Module[{pi=Flatten[Table[PrimePi[#[[1]]],#[[2]]]&/@FactorInteger[n]]},Times@@pi-Total[pi]]; Join[{1},Array[dps,100,2]] (* _Harvey P. Dale_, May 26 2023 *)
%o A325036 (PARI)
%o A325036 A003963(n) = { n=factor(n); n[, 1]=apply(primepi, n[, 1]); factorback(n) }; \\ From A003963
%o A325036 A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); };
%o A325036 A325036(n) = (A003963(n) - A056239(n)); \\ _Antti Karttunen_, May 08 2022
%Y A325036 Positions of zeros are A301987. Positions of ones are A325041. Positions of negative ones are A325042.
%Y A325036 Cf. A000720, A001222, A003963, A056239, A112798, A122111, A178503, A175508, A319000.
%Y A325036 Cf. A325032, A325033, A325034, A325035, A325037, A325038, A325040, A325044.
%K A325036 sign
%O A325036 1,8
%A A325036 _Gus Wiseman_, Mar 25 2019
%E A325036 Data section extended up to a(93) by _Antti Karttunen_, May 08 2022