cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325037 Heinz numbers of integer partitions whose product of parts is greater than their sum.

This page as a plain text file.
%I A325037 #7 Mar 27 2019 12:28:16
%S A325037 1,15,21,25,27,33,35,39,42,45,49,50,51,54,55,57,63,65,66,69,70,75,77,
%T A325037 78,81,85,87,90,91,93,95,98,99,100,102,105,110,111,114,115,117,119,
%U A325037 121,123,125,126,129,130,132,133,135,138,140,141,143,145,147,150,153
%N A325037 Heinz numbers of integer partitions whose product of parts is greater than their sum.
%C A325037 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is greater than their sum of prime indices (A056239).
%C A325037 The enumeration of these partitions by sum is given by A114324.
%H A325037 Alois P. Heinz, <a href="/A325037/b325037.txt">Table of n, a(n) for n = 1..10000</a>
%F A325037 A003963(a(n)) > A056239(a(n)).
%e A325037 The sequence of terms together with their prime indices begins:
%e A325037    1: {}
%e A325037   15: {2,3}
%e A325037   21: {2,4}
%e A325037   25: {3,3}
%e A325037   27: {2,2,2}
%e A325037   33: {2,5}
%e A325037   35: {3,4}
%e A325037   39: {2,6}
%e A325037   42: {1,2,4}
%e A325037   45: {2,2,3}
%e A325037   49: {4,4}
%e A325037   50: {1,3,3}
%e A325037   51: {2,7}
%e A325037   54: {1,2,2,2}
%e A325037   55: {3,5}
%e A325037   57: {2,8}
%e A325037   63: {2,2,4}
%e A325037   65: {3,6}
%e A325037   66: {1,2,5}
%e A325037   69: {2,9}
%e A325037   70: {1,3,4}
%e A325037   75: {2,3,3}
%e A325037   77: {4,5}
%e A325037   78: {1,2,6}
%e A325037   81: {2,2,2,2}
%p A325037 q:= n-> (l-> mul(i, i=l)>add(i, i=l))(map(i->
%p A325037     numtheory[pi](i[1])$i[2], ifactors(n)[2])):
%p A325037 select(q, [$1..200])[];  # _Alois P. Heinz_, Mar 27 2019
%t A325037 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325037 Select[Range[100],Times@@primeMS[#]>Plus@@primeMS[#]&]
%Y A325037 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000.
%Y A325037 Cf. A325032, A325033, A325036, A325038, A325041, A325042, A325044.
%K A325037 nonn
%O A325037 1,2
%A A325037 _Gus Wiseman_, Mar 25 2019