This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325037 #7 Mar 27 2019 12:28:16 %S A325037 1,15,21,25,27,33,35,39,42,45,49,50,51,54,55,57,63,65,66,69,70,75,77, %T A325037 78,81,85,87,90,91,93,95,98,99,100,102,105,110,111,114,115,117,119, %U A325037 121,123,125,126,129,130,132,133,135,138,140,141,143,145,147,150,153 %N A325037 Heinz numbers of integer partitions whose product of parts is greater than their sum. %C A325037 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is greater than their sum of prime indices (A056239). %C A325037 The enumeration of these partitions by sum is given by A114324. %H A325037 Alois P. Heinz, <a href="/A325037/b325037.txt">Table of n, a(n) for n = 1..10000</a> %F A325037 A003963(a(n)) > A056239(a(n)). %e A325037 The sequence of terms together with their prime indices begins: %e A325037 1: {} %e A325037 15: {2,3} %e A325037 21: {2,4} %e A325037 25: {3,3} %e A325037 27: {2,2,2} %e A325037 33: {2,5} %e A325037 35: {3,4} %e A325037 39: {2,6} %e A325037 42: {1,2,4} %e A325037 45: {2,2,3} %e A325037 49: {4,4} %e A325037 50: {1,3,3} %e A325037 51: {2,7} %e A325037 54: {1,2,2,2} %e A325037 55: {3,5} %e A325037 57: {2,8} %e A325037 63: {2,2,4} %e A325037 65: {3,6} %e A325037 66: {1,2,5} %e A325037 69: {2,9} %e A325037 70: {1,3,4} %e A325037 75: {2,3,3} %e A325037 77: {4,5} %e A325037 78: {1,2,6} %e A325037 81: {2,2,2,2} %p A325037 q:= n-> (l-> mul(i, i=l)>add(i, i=l))(map(i-> %p A325037 numtheory[pi](i[1])$i[2], ifactors(n)[2])): %p A325037 select(q, [$1..200])[]; # _Alois P. Heinz_, Mar 27 2019 %t A325037 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325037 Select[Range[100],Times@@primeMS[#]>Plus@@primeMS[#]&] %Y A325037 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000. %Y A325037 Cf. A325032, A325033, A325036, A325038, A325041, A325042, A325044. %K A325037 nonn %O A325037 1,2 %A A325037 _Gus Wiseman_, Mar 25 2019