cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325038 Heinz numbers of integer partitions whose sum of parts is greater than their product.

This page as a plain text file.
%I A325038 #5 Mar 26 2019 21:06:04
%S A325038 4,6,8,10,12,14,16,18,20,22,24,26,28,32,34,36,38,40,44,46,48,52,56,58,
%T A325038 60,62,64,68,72,74,76,80,82,86,88,92,94,96,104,106,112,116,118,120,
%U A325038 122,124,128,134,136,142,144,146,148,152,158,160,164,166,168,172
%N A325038 Heinz numbers of integer partitions whose sum of parts is greater than their product.
%C A325038 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is less than their sum of prime indices (A056239).
%C A325038 The enumeration of these partitions by sum is given by A096276 shifted once to the right.
%F A325038 A003963(a(n)) < A056239(a(n)).
%F A325038 a(n) = 2 * A325044(n).
%e A325038 The sequence of terms together with their prime indices begins:
%e A325038    4: {1,1}
%e A325038    6: {1,2}
%e A325038    8: {1,1,1}
%e A325038   10: {1,3}
%e A325038   12: {1,1,2}
%e A325038   14: {1,4}
%e A325038   16: {1,1,1,1}
%e A325038   18: {1,2,2}
%e A325038   20: {1,1,3}
%e A325038   22: {1,5}
%e A325038   24: {1,1,1,2}
%e A325038   26: {1,6}
%e A325038   28: {1,1,4}
%e A325038   32: {1,1,1,1,1}
%e A325038   34: {1,7}
%e A325038   36: {1,1,2,2}
%e A325038   38: {1,8}
%e A325038   40: {1,1,1,3}
%e A325038   44: {1,1,5}
%e A325038   46: {1,9}
%e A325038   48: {1,1,1,1,2}
%t A325038 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325038 Select[Range[100],Times@@primeMS[#]<Plus@@primeMS[#]&]
%Y A325038 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000.
%Y A325038 Cf. A325032, A325033, A325036, A325037, A325041, A325042, A325044.
%K A325038 nonn
%O A325038 1,1
%A A325038 _Gus Wiseman_, Mar 25 2019