This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325038 #5 Mar 26 2019 21:06:04 %S A325038 4,6,8,10,12,14,16,18,20,22,24,26,28,32,34,36,38,40,44,46,48,52,56,58, %T A325038 60,62,64,68,72,74,76,80,82,86,88,92,94,96,104,106,112,116,118,120, %U A325038 122,124,128,134,136,142,144,146,148,152,158,160,164,166,168,172 %N A325038 Heinz numbers of integer partitions whose sum of parts is greater than their product. %C A325038 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is less than their sum of prime indices (A056239). %C A325038 The enumeration of these partitions by sum is given by A096276 shifted once to the right. %F A325038 A003963(a(n)) < A056239(a(n)). %F A325038 a(n) = 2 * A325044(n). %e A325038 The sequence of terms together with their prime indices begins: %e A325038 4: {1,1} %e A325038 6: {1,2} %e A325038 8: {1,1,1} %e A325038 10: {1,3} %e A325038 12: {1,1,2} %e A325038 14: {1,4} %e A325038 16: {1,1,1,1} %e A325038 18: {1,2,2} %e A325038 20: {1,1,3} %e A325038 22: {1,5} %e A325038 24: {1,1,1,2} %e A325038 26: {1,6} %e A325038 28: {1,1,4} %e A325038 32: {1,1,1,1,1} %e A325038 34: {1,7} %e A325038 36: {1,1,2,2} %e A325038 38: {1,8} %e A325038 40: {1,1,1,3} %e A325038 44: {1,1,5} %e A325038 46: {1,9} %e A325038 48: {1,1,1,1,2} %t A325038 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325038 Select[Range[100],Times@@primeMS[#]<Plus@@primeMS[#]&] %Y A325038 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000. %Y A325038 Cf. A325032, A325033, A325036, A325037, A325041, A325042, A325044. %K A325038 nonn %O A325038 1,1 %A A325038 _Gus Wiseman_, Mar 25 2019