This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325039 #9 Jun 27 2020 04:36:35 %S A325039 1,1,0,1,1,1,1,1,6,2,2,4,3,5,7,6,5,7,9,10,11,18,16,19,19,16,20,20,28, %T A325039 39,28,40,53,45,52,59,71,61,73,97,102,95,112,131,137,148,140,166,199, %U A325039 181,238,251,255,289,339,344,381,398,422,464,541,555,628,677,732 %N A325039 Number of integer partitions of n with the same product of parts as their conjugate. %C A325039 For example, the partition (6,4,1) with product 24 has conjugate (3,2,2,2,1,1) with product also 24. %C A325039 The Heinz numbers of these partitions are given by A325040. %e A325039 The a(8) = 6 through a(15) = 6 integer partitions: %e A325039 (44) (333) (4321) (641) (4422) (4432) (6431) %e A325039 (332) (51111) (52111) (4331) (53211) (6421) (8411) %e A325039 (431) (322211) (621111) (53311) (54221) %e A325039 (2222) (611111) (432211) (433211) %e A325039 (3221) (7111111) (632111) %e A325039 (4211) (7211111) %e A325039 (42221111) %t A325039 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A325039 Table[Length[Select[IntegerPartitions[n],Times@@#==Times@@conj[#]&]],{n,0,30}] %Y A325039 Cf. A001055, A064573, A122111, A296150, A318950, A319000, A320322, A321649. %Y A325039 Cf. A325040, A325041, A325042, A325045. %K A325039 nonn %O A325039 0,9 %A A325039 _Gus Wiseman_, Mar 25 2019 %E A325039 More terms from _Jinyuan Wang_, Jun 27 2020