cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325040 Heinz numbers of integer partitions with the same product of parts as their conjugate.

This page as a plain text file.
%I A325040 #5 Mar 26 2019 21:06:22
%S A325040 1,2,6,9,20,30,49,56,70,75,81,84,90,125,176,182,210,264,350,416,441,
%T A325040 532,540,546,624,660,735,910,1088,1100,1260,1378,1386,1443,1520,1560,
%U A325040 1624,1632,1715,2100,2310,2401,2405,2432,2489,2600,3024,3267,3276,3648,3744
%N A325040 Heinz numbers of integer partitions with the same product of parts as their conjugate.
%C A325040 For example, 182 is the Heinz number of (6,4,1) with product 24 and conjugate (3,2,2,2,1,1) with product also 24.
%C A325040 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k).
%C A325040 The enumeration of these partitions by sum is given by A325039.
%e A325040 The sequence of terms together with their prime indices begins:
%e A325040     1: {}
%e A325040     2: {1}
%e A325040     6: {1,2}
%e A325040     9: {2,2}
%e A325040    20: {1,1,3}
%e A325040    30: {1,2,3}
%e A325040    49: {4,4}
%e A325040    56: {1,1,1,4}
%e A325040    70: {1,3,4}
%e A325040    75: {2,3,3}
%e A325040    81: {2,2,2,2}
%e A325040    84: {1,1,2,4}
%e A325040    90: {1,2,2,3}
%e A325040   125: {3,3,3}
%e A325040   176: {1,1,1,1,5}
%e A325040   182: {1,4,6}
%e A325040   210: {1,2,3,4}
%e A325040   264: {1,1,1,2,5}
%e A325040   350: {1,3,3,4}
%e A325040   416: {1,1,1,1,1,6}
%t A325040 priptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325040 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A325040 Select[Range[100],Times@@priptn[#]==Times@@conj[priptn[#]]&]
%Y A325040 Cf. A000720, A001055, A001222, A003963, A056239, A112798, A122111, A321650.
%Y A325040 Cf. A325039, A325045.
%K A325040 nonn
%O A325040 1,2
%A A325040 _Gus Wiseman_, Mar 25 2019