This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325040 #5 Mar 26 2019 21:06:22 %S A325040 1,2,6,9,20,30,49,56,70,75,81,84,90,125,176,182,210,264,350,416,441, %T A325040 532,540,546,624,660,735,910,1088,1100,1260,1378,1386,1443,1520,1560, %U A325040 1624,1632,1715,2100,2310,2401,2405,2432,2489,2600,3024,3267,3276,3648,3744 %N A325040 Heinz numbers of integer partitions with the same product of parts as their conjugate. %C A325040 For example, 182 is the Heinz number of (6,4,1) with product 24 and conjugate (3,2,2,2,1,1) with product also 24. %C A325040 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k). %C A325040 The enumeration of these partitions by sum is given by A325039. %e A325040 The sequence of terms together with their prime indices begins: %e A325040 1: {} %e A325040 2: {1} %e A325040 6: {1,2} %e A325040 9: {2,2} %e A325040 20: {1,1,3} %e A325040 30: {1,2,3} %e A325040 49: {4,4} %e A325040 56: {1,1,1,4} %e A325040 70: {1,3,4} %e A325040 75: {2,3,3} %e A325040 81: {2,2,2,2} %e A325040 84: {1,1,2,4} %e A325040 90: {1,2,2,3} %e A325040 125: {3,3,3} %e A325040 176: {1,1,1,1,5} %e A325040 182: {1,4,6} %e A325040 210: {1,2,3,4} %e A325040 264: {1,1,1,2,5} %e A325040 350: {1,3,3,4} %e A325040 416: {1,1,1,1,1,6} %t A325040 priptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325040 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A325040 Select[Range[100],Times@@priptn[#]==Times@@conj[priptn[#]]&] %Y A325040 Cf. A000720, A001055, A001222, A003963, A056239, A112798, A122111, A321650. %Y A325040 Cf. A325039, A325045. %K A325040 nonn %O A325040 1,2 %A A325040 _Gus Wiseman_, Mar 25 2019