cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325041 Heinz numbers of integer partitions whose product of parts is one greater than their sum.

This page as a plain text file.
%I A325041 #6 Mar 26 2019 21:06:30
%S A325041 1,15,42,54,100,132,312,560,720,816,1824,3520,4416,6272,8064,10368,
%T A325041 11136,16640,23808,38400,56832,78848,87040,101376,125952,264192,
%U A325041 389120,577536,745472,958464,1302528,1720320,1884160,1982464,2211840,2899968,5996544
%N A325041 Heinz numbers of integer partitions whose product of parts is one greater than their sum.
%C A325041 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is one more than their sum of prime indices (A056239).
%F A325041 A003963(a(n)) = A056239(a(n)) + 1.
%e A325041 The sequence of terms together with their prime indices begins:
%e A325041       1: {}
%e A325041      15: {2,3}
%e A325041      42: {1,2,4}
%e A325041      54: {1,2,2,2}
%e A325041     100: {1,1,3,3}
%e A325041     132: {1,1,2,5}
%e A325041     312: {1,1,1,2,6}
%e A325041     560: {1,1,1,1,3,4}
%e A325041     720: {1,1,1,1,2,2,3}
%e A325041     816: {1,1,1,1,2,7}
%e A325041    1824: {1,1,1,1,1,2,8}
%e A325041    3520: {1,1,1,1,1,1,3,5}
%e A325041    4416: {1,1,1,1,1,1,2,9}
%e A325041    6272: {1,1,1,1,1,1,1,4,4}
%e A325041    8064: {1,1,1,1,1,1,1,2,2,4}
%e A325041   10368: {1,1,1,1,1,1,1,2,2,2,2}
%e A325041   11136: {1,1,1,1,1,1,1,2,10}
%e A325041   16640: {1,1,1,1,1,1,1,1,3,6}
%e A325041   23808: {1,1,1,1,1,1,1,1,2,11}
%e A325041   38400: {1,1,1,1,1,1,1,1,1,2,3,3}
%t A325041 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325041 Select[Range[10000],Times@@primeMS[#]==Total[primeMS[#]]+1&]
%Y A325041 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000.
%Y A325041 Cf. A325032, A325033, A325036, A325037, A325038, A325042, A325044.
%K A325041 nonn
%O A325041 1,2
%A A325041 _Gus Wiseman_, Mar 25 2019