This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325041 #6 Mar 26 2019 21:06:30 %S A325041 1,15,42,54,100,132,312,560,720,816,1824,3520,4416,6272,8064,10368, %T A325041 11136,16640,23808,38400,56832,78848,87040,101376,125952,264192, %U A325041 389120,577536,745472,958464,1302528,1720320,1884160,1982464,2211840,2899968,5996544 %N A325041 Heinz numbers of integer partitions whose product of parts is one greater than their sum. %C A325041 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is one more than their sum of prime indices (A056239). %F A325041 A003963(a(n)) = A056239(a(n)) + 1. %e A325041 The sequence of terms together with their prime indices begins: %e A325041 1: {} %e A325041 15: {2,3} %e A325041 42: {1,2,4} %e A325041 54: {1,2,2,2} %e A325041 100: {1,1,3,3} %e A325041 132: {1,1,2,5} %e A325041 312: {1,1,1,2,6} %e A325041 560: {1,1,1,1,3,4} %e A325041 720: {1,1,1,1,2,2,3} %e A325041 816: {1,1,1,1,2,7} %e A325041 1824: {1,1,1,1,1,2,8} %e A325041 3520: {1,1,1,1,1,1,3,5} %e A325041 4416: {1,1,1,1,1,1,2,9} %e A325041 6272: {1,1,1,1,1,1,1,4,4} %e A325041 8064: {1,1,1,1,1,1,1,2,2,4} %e A325041 10368: {1,1,1,1,1,1,1,2,2,2,2} %e A325041 11136: {1,1,1,1,1,1,1,2,10} %e A325041 16640: {1,1,1,1,1,1,1,1,3,6} %e A325041 23808: {1,1,1,1,1,1,1,1,2,11} %e A325041 38400: {1,1,1,1,1,1,1,1,1,2,3,3} %t A325041 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325041 Select[Range[10000],Times@@primeMS[#]==Total[primeMS[#]]+1&] %Y A325041 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000. %Y A325041 Cf. A325032, A325033, A325036, A325037, A325038, A325042, A325044. %K A325041 nonn %O A325041 1,2 %A A325041 _Gus Wiseman_, Mar 25 2019