cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325042 Heinz numbers of integer partitions whose product of parts is one fewer than their sum.

This page as a plain text file.
%I A325042 #5 Mar 26 2019 21:06:38
%S A325042 4,6,10,14,18,22,26,34,38,46,58,60,62,74,82,86,94,106,118,122,134,142,
%T A325042 146,158,166,168,178,194,202,206,214,216,218,226,254,262,274,278,298,
%U A325042 302,314,326,334,346,358,362,382,386,394,398,400,422,446,454,458,466
%N A325042 Heinz numbers of integer partitions whose product of parts is one fewer than their sum.
%C A325042 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is one fewer than their sum of prime indices (A056239).
%F A325042 A003963(a(n)) = A056239(a(n)) - 1.
%F A325042 a(n) = 2 * A301987(n).
%e A325042 The sequence of terms together with their prime indices begins:
%e A325042     4: {1,1}
%e A325042     6: {1,2}
%e A325042    10: {1,3}
%e A325042    14: {1,4}
%e A325042    18: {1,2,2}
%e A325042    22: {1,5}
%e A325042    26: {1,6}
%e A325042    34: {1,7}
%e A325042    38: {1,8}
%e A325042    46: {1,9}
%e A325042    58: {1,10}
%e A325042    60: {1,1,2,3}
%e A325042    62: {1,11}
%e A325042    74: {1,12}
%e A325042    82: {1,13}
%e A325042    86: {1,14}
%e A325042    94: {1,15}
%e A325042   106: {1,16}
%e A325042   118: {1,17}
%e A325042   122: {1,18}
%t A325042 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325042 Select[Range[1000],Times@@primeMS[#]==Total[primeMS[#]]-1&]
%Y A325042 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000.
%Y A325042 Cf. A325032, A325033, A325036, A325037, A325038, A325041, A325044.
%K A325042 nonn
%O A325042 1,1
%A A325042 _Gus Wiseman_, Mar 25 2019