This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325042 #5 Mar 26 2019 21:06:38 %S A325042 4,6,10,14,18,22,26,34,38,46,58,60,62,74,82,86,94,106,118,122,134,142, %T A325042 146,158,166,168,178,194,202,206,214,216,218,226,254,262,274,278,298, %U A325042 302,314,326,334,346,358,362,382,386,394,398,400,422,446,454,458,466 %N A325042 Heinz numbers of integer partitions whose product of parts is one fewer than their sum. %C A325042 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is one fewer than their sum of prime indices (A056239). %F A325042 A003963(a(n)) = A056239(a(n)) - 1. %F A325042 a(n) = 2 * A301987(n). %e A325042 The sequence of terms together with their prime indices begins: %e A325042 4: {1,1} %e A325042 6: {1,2} %e A325042 10: {1,3} %e A325042 14: {1,4} %e A325042 18: {1,2,2} %e A325042 22: {1,5} %e A325042 26: {1,6} %e A325042 34: {1,7} %e A325042 38: {1,8} %e A325042 46: {1,9} %e A325042 58: {1,10} %e A325042 60: {1,1,2,3} %e A325042 62: {1,11} %e A325042 74: {1,12} %e A325042 82: {1,13} %e A325042 86: {1,14} %e A325042 94: {1,15} %e A325042 106: {1,16} %e A325042 118: {1,17} %e A325042 122: {1,18} %t A325042 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325042 Select[Range[1000],Times@@primeMS[#]==Total[primeMS[#]]-1&] %Y A325042 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000. %Y A325042 Cf. A325032, A325033, A325036, A325037, A325038, A325041, A325044. %K A325042 nonn %O A325042 1,1 %A A325042 _Gus Wiseman_, Mar 25 2019