cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325043 Heinz numbers of integer partitions, with at least three parts, whose product of parts is one fewer than their sum.

This page as a plain text file.
%I A325043 #9 Jun 28 2020 02:25:36
%S A325043 18,60,168,216,400,528,1248,2240,2880,3264,7296,14080,17664,25088,
%T A325043 32256,41472,44544,66560,95232,153600,227328,315392,348160,405504,
%U A325043 503808,1056768,1556480,2310144,2981888,3833856,5210112,6881280,7536640,7929856,8847360,11599872
%N A325043 Heinz numbers of integer partitions, with at least three parts, whose product of parts is one fewer than their sum.
%C A325043 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers with at least three prime factors (counted with multiplicity) whose product of prime indices (A003963) is one fewer than their sum of prime indices (A056239).
%F A325043 a(n) = 2 * A301988(n).
%e A325043 The sequence of terms together with their prime indices begins:
%e A325043      18: {1,2,2}
%e A325043      60: {1,1,2,3}
%e A325043     168: {1,1,1,2,4}
%e A325043     216: {1,1,1,2,2,2}
%e A325043     400: {1,1,1,1,3,3}
%e A325043     528: {1,1,1,1,2,5}
%e A325043    1248: {1,1,1,1,1,2,6}
%e A325043    2240: {1,1,1,1,1,1,3,4}
%e A325043    2880: {1,1,1,1,1,1,2,2,3}
%e A325043    3264: {1,1,1,1,1,1,2,7}
%e A325043    7296: {1,1,1,1,1,1,1,2,8}
%e A325043   14080: {1,1,1,1,1,1,1,1,3,5}
%e A325043   17664: {1,1,1,1,1,1,1,1,2,9}
%e A325043   25088: {1,1,1,1,1,1,1,1,1,4,4}
%e A325043   32256: {1,1,1,1,1,1,1,1,1,2,2,4}
%e A325043   41472: {1,1,1,1,1,1,1,1,1,2,2,2,2}
%e A325043   44544: {1,1,1,1,1,1,1,1,1,2,10}
%e A325043   66560: {1,1,1,1,1,1,1,1,1,1,3,6}
%e A325043   95232: {1,1,1,1,1,1,1,1,1,1,2,11}
%t A325043 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325043 Select[Range[10000],And[PrimeOmega[#]>2,Times@@primeMS[#]==Total[primeMS[#]]-1]&]
%Y A325043 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000.
%Y A325043 Cf. A325032, A325033, A325036, A325037, A325038, A325041, A325042, A325044.
%K A325043 nonn
%O A325043 1,1
%A A325043 _Gus Wiseman_, Mar 25 2019
%E A325043 More terms from _Jinyuan Wang_, Jun 27 2020