This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325043 #9 Jun 28 2020 02:25:36 %S A325043 18,60,168,216,400,528,1248,2240,2880,3264,7296,14080,17664,25088, %T A325043 32256,41472,44544,66560,95232,153600,227328,315392,348160,405504, %U A325043 503808,1056768,1556480,2310144,2981888,3833856,5210112,6881280,7536640,7929856,8847360,11599872 %N A325043 Heinz numbers of integer partitions, with at least three parts, whose product of parts is one fewer than their sum. %C A325043 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers with at least three prime factors (counted with multiplicity) whose product of prime indices (A003963) is one fewer than their sum of prime indices (A056239). %F A325043 a(n) = 2 * A301988(n). %e A325043 The sequence of terms together with their prime indices begins: %e A325043 18: {1,2,2} %e A325043 60: {1,1,2,3} %e A325043 168: {1,1,1,2,4} %e A325043 216: {1,1,1,2,2,2} %e A325043 400: {1,1,1,1,3,3} %e A325043 528: {1,1,1,1,2,5} %e A325043 1248: {1,1,1,1,1,2,6} %e A325043 2240: {1,1,1,1,1,1,3,4} %e A325043 2880: {1,1,1,1,1,1,2,2,3} %e A325043 3264: {1,1,1,1,1,1,2,7} %e A325043 7296: {1,1,1,1,1,1,1,2,8} %e A325043 14080: {1,1,1,1,1,1,1,1,3,5} %e A325043 17664: {1,1,1,1,1,1,1,1,2,9} %e A325043 25088: {1,1,1,1,1,1,1,1,1,4,4} %e A325043 32256: {1,1,1,1,1,1,1,1,1,2,2,4} %e A325043 41472: {1,1,1,1,1,1,1,1,1,2,2,2,2} %e A325043 44544: {1,1,1,1,1,1,1,1,1,2,10} %e A325043 66560: {1,1,1,1,1,1,1,1,1,1,3,6} %e A325043 95232: {1,1,1,1,1,1,1,1,1,1,2,11} %t A325043 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325043 Select[Range[10000],And[PrimeOmega[#]>2,Times@@primeMS[#]==Total[primeMS[#]]-1]&] %Y A325043 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000. %Y A325043 Cf. A325032, A325033, A325036, A325037, A325038, A325041, A325042, A325044. %K A325043 nonn %O A325043 1,1 %A A325043 _Gus Wiseman_, Mar 25 2019 %E A325043 More terms from _Jinyuan Wang_, Jun 27 2020