This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325044 #4 Mar 26 2019 21:06:55 %S A325044 2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,22,23,24,26,28,29,30, %T A325044 31,32,34,36,37,38,40,41,43,44,46,47,48,52,53,56,58,59,60,61,62,64,67, %U A325044 68,71,72,73,74,76,79,80,82,83,84,86,88,89,92,94,96,97,101 %N A325044 Heinz numbers of integer partitions whose sum of parts is greater than or equal to their product. %C A325044 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is less than or equal to their sum of prime indices (A056239). %C A325044 The enumeration of these partitions by sum is given by A096276. %F A325044 A003963(a(n)) <= A056239(a(n)). %F A325044 a(n) = A325038(n)/2. %F A325044 Union of A301987 and A325038. %e A325044 The sequence of terms together with their prime indices begins: %e A325044 2: {1} %e A325044 3: {2} %e A325044 4: {1,1} %e A325044 5: {3} %e A325044 6: {1,2} %e A325044 7: {4} %e A325044 8: {1,1,1} %e A325044 9: {2,2} %e A325044 10: {1,3} %e A325044 11: {5} %e A325044 12: {1,1,2} %e A325044 13: {6} %e A325044 14: {1,4} %e A325044 16: {1,1,1,1} %e A325044 17: {7} %e A325044 18: {1,2,2} %e A325044 19: {8} %e A325044 20: {1,1,3} %e A325044 22: {1,5} %e A325044 23: {9} %e A325044 24: {1,1,1,2} %t A325044 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325044 Select[Range[100],Times@@primeMS[#]<=Plus@@primeMS[#]&] %Y A325044 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000. %Y A325044 Cf. A325032, A325033, A325036, A325037, A325038, A325041, A325042. %K A325044 nonn %O A325044 1,1 %A A325044 _Gus Wiseman_, Mar 25 2019