cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325044 Heinz numbers of integer partitions whose sum of parts is greater than or equal to their product.

This page as a plain text file.
%I A325044 #4 Mar 26 2019 21:06:55
%S A325044 2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,22,23,24,26,28,29,30,
%T A325044 31,32,34,36,37,38,40,41,43,44,46,47,48,52,53,56,58,59,60,61,62,64,67,
%U A325044 68,71,72,73,74,76,79,80,82,83,84,86,88,89,92,94,96,97,101
%N A325044 Heinz numbers of integer partitions whose sum of parts is greater than or equal to their product.
%C A325044 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is less than or equal to their sum of prime indices (A056239).
%C A325044 The enumeration of these partitions by sum is given by A096276.
%F A325044 A003963(a(n)) <= A056239(a(n)).
%F A325044 a(n) = A325038(n)/2.
%F A325044 Union of A301987 and A325038.
%e A325044 The sequence of terms together with their prime indices begins:
%e A325044    2: {1}
%e A325044    3: {2}
%e A325044    4: {1,1}
%e A325044    5: {3}
%e A325044    6: {1,2}
%e A325044    7: {4}
%e A325044    8: {1,1,1}
%e A325044    9: {2,2}
%e A325044   10: {1,3}
%e A325044   11: {5}
%e A325044   12: {1,1,2}
%e A325044   13: {6}
%e A325044   14: {1,4}
%e A325044   16: {1,1,1,1}
%e A325044   17: {7}
%e A325044   18: {1,2,2}
%e A325044   19: {8}
%e A325044   20: {1,1,3}
%e A325044   22: {1,5}
%e A325044   23: {9}
%e A325044   24: {1,1,1,2}
%t A325044 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325044 Select[Range[100],Times@@primeMS[#]<=Plus@@primeMS[#]&]
%Y A325044 Cf. A000720, A003963, A056239, A112798, A178503, A175508, A301987, A319000.
%Y A325044 Cf. A325032, A325033, A325036, A325037, A325038, A325041, A325042.
%K A325044 nonn
%O A325044 1,1
%A A325044 _Gus Wiseman_, Mar 25 2019