This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325045 #10 May 03 2022 14:37:34 %S A325045 1,0,0,1,0,0,0,1,1,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,2,0,0, %T A325045 0,2,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0, %U A325045 0,0,0,2,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,3,0,0,0,0,0,0,0,2,0,0 %N A325045 Number of factorizations of n whose conjugate as an integer partition has no ones. %C A325045 After a(1) = 1, a(n) is the number of factorizations of n with at least two factors, the largest two of which are equal. %H A325045 Antti Karttunen, <a href="/A325045/b325045.txt">Table of n, a(n) for n = 1..65537</a> %e A325045 The initial terms count the following factorizations: %e A325045 1: {} %e A325045 4: 2*2 %e A325045 8: 2*2*2 %e A325045 9: 3*3 %e A325045 16: 2*2*2*2 %e A325045 16: 4*4 %e A325045 18: 2*3*3 %e A325045 25: 5*5 %e A325045 27: 3*3*3 %e A325045 32: 2*2*2*2*2 %e A325045 32: 2*4*4 %e A325045 36: 2*2*3*3 %e A325045 36: 6*6 %e A325045 48: 3*4*4 %e A325045 49: 7*7 %e A325045 50: 2*5*5 %e A325045 54: 2*3*3*3 %e A325045 64: 2*2*2*2*2*2 %e A325045 64: 2*2*4*4 %e A325045 64: 4*4*4 %e A325045 64: 8*8 %t A325045 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A325045 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A325045 Table[Length[Select[facs[n],FreeQ[conj[#],1]&]],{n,1,100}] %o A325045 (PARI) A325045(n, m=n, facs=List([])) = if(1==n, (0==#facs || (#facs>=2 && facs[1]==facs[2])), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A325045(n/d, d, newfacs))); (s)); \\ _Antti Karttunen_, May 03 2022 %Y A325045 Cf. A001055, A001222, A002865, A096276, A114324, A122111, A318950, A319005, A319916, A320322, A321648, A325039, A353645 [= a(n^2)]. %K A325045 nonn %O A325045 1,16 %A A325045 _Gus Wiseman_, Mar 27 2019 %E A325045 More terms from _Antti Karttunen_, May 03 2022