cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325050 a(n) = Product_{k=0..n} (k!^2 + 1).

This page as a plain text file.
%I A325050 #5 Mar 27 2019 08:20:16
%S A325050 2,4,20,740,426980,6148938980,3187616116170980,
%T A325050 80970552724144881738980,131634021973939424914920841290980,
%U A325050 17333817381151204925617274632152908873802980,228254990993381085562170532497621436371926846785405002980
%N A325050 a(n) = Product_{k=0..n} (k!^2 + 1).
%F A325050 a(n) ~ c * n^(n^2 + 2*n + 5/6) * (2*Pi)^(n+1) / (A^2 * exp(3*n^2/2 + 2*n - 1/6)), where c = Product_{k>=0} (1 + 1/k!^2) = 5.1481781945902396880952694880498895... and A is the Glaisher-Kinkelin constant A074962.
%t A325050 Table[Product[k!^2 + 1, {k, 0, n}], {n, 0, 12}]
%t A325050 Table[BarnesG[n+2]^2 * Product[1 + 1/k!^2, {k, 0, n}], {n, 0, 12}]
%Y A325050 Cf. A055209, A101686, A217757, A238695, A325048.
%K A325050 nonn
%O A325050 0,1
%A A325050 _Vaclav Kotesovec_, Mar 26 2019