cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325051 a(n) = Product_{i=0..n, j=0..n, k=0..n} (i!*j!*k! + 1).

This page as a plain text file.
%I A325051 #6 Mar 27 2019 07:39:38
%S A325051 2,256,19131876000000,
%T A325051 20879156515576282948808247752954619590255260568062500000000
%N A325051 a(n) = Product_{i=0..n, j=0..n, k=0..n} (i!*j!*k! + 1).
%C A325051 Next term is too long to be included.
%F A325051 a(n) ~ c * (2*Pi)^(3*n^3/2 + 9*n^2/2 + 9*n/2 + 3/2) * n^((n+1)^2*(6*n^2 + 12*n + 5)/4) / (A^(3*(n+1)^2) * exp(9*n^4/4 + 15*n^3/2 + 8*n^2 + 9*n/4 - 59/80)), where A is the Glaisher-Kinkelin constant A074962 and c = Product_{i>=0, j>=0, k>=0} (1 + 1/(i!*j!*k!)) = 10013049.64089403856780758322163675337812476527762657951330...
%t A325051 Table[Product[i!*j!*k! + 1, {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 5}]
%t A325051 Table[BarnesG[n+2]^(3*(n+1)^2) * Product[1 + 1/(i!*j!*k!), {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 5}]
%Y A325051 Cf. A306907, A325049.
%K A325051 nonn
%O A325051 0,1
%A A325051 _Vaclav Kotesovec_, Mar 26 2019