cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325054 Sum of all compositions [c_1, c_2, ..., c_q] of n encoded as Product_{i=1..q} prime(i)^(c_i).

This page as a plain text file.
%I A325054 #21 Apr 27 2021 10:56:45
%S A325054 1,2,10,68,640,8372,147820,3321908,90184300,2857153892,104146026820,
%T A325054 4363900557128,209763325978480,11462371025215112,702793156696129600,
%U A325054 47649412958404240688,3521160558576929028400,280427910532671712997732,23932837097476310995036900
%N A325054 Sum of all compositions [c_1, c_2, ..., c_q] of n encoded as Product_{i=1..q} prime(i)^(c_i).
%H A325054 Alois P. Heinz, <a href="/A325054/b325054.txt">Table of n, a(n) for n = 0..335</a>
%H A325054 Wikipedia, <a href="https://en.wikipedia.org/wiki/G%C3%B6del_numbering#G%C3%B6del&#39;s_encoding">Gödel's encoding</a>
%e A325054 The compositions of 3 and their encodings are [1,1,1]-> 30, [1,2]-> 18, [2,1]-> 12, [3]-> 8.  The sum gives a(3) = 68.
%p A325054 b:= proc(n, j) option remember; `if`(n=0, 1,
%p A325054       add(ithprime(j)^i*b(n-i, j+1), i=1..n))
%p A325054     end:
%p A325054 a:= n-> b(n, 1):
%p A325054 seq(a(n), n=0..20);  # _Alois P. Heinz_, Sep 04 2019
%t A325054 b[n_, j_] := b[n, j] = If[n==0, 1, Sum[Prime[j]^i*b[n-i, j+1], {i, 1, n}]];
%t A325054 a[n_] := b[n, 1];
%t A325054 a /@ Range[0, 20] (* _Jean-François Alcover_, Apr 23 2021, after _Alois P. Heinz_ *)
%Y A325054 Row sums of A324939.
%Y A325054 Cf. A000040, A074140.
%K A325054 nonn
%O A325054 0,2
%A A325054 _Alois P. Heinz_, Sep 04 2019