This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325057 #24 Dec 22 2024 09:08:00 %S A325057 1,2,3,7,19,94,381,2217,10248,64082,572741,3590815,33731134,291308123, %T A325057 1896596488,14675287694,147847569839,1642854121867,12717640104203, %U A325057 134707566446733,1285768348848054,9334472487460317,97284913917125312,922382339920122509,10370484766702974615 %N A325057 Number of positive integers k <= prime(n)# so that (k mod p_1) < (k mod p_2) < ... < (k mod p_n). %C A325057 This sequence emerges during computation of A306582 and A306612. %H A325057 Alois P. Heinz, <a href="/A325057/b325057.txt">Table of n, a(n) for n = 0..500</a> %e A325057 a(3) = 7: %e A325057 Solutions for k that have increasing remainders modulo the first 3 primes: %e A325057 k modulo 2 3 5 %e A325057 ===================== %e A325057 22 0 < 1 < 2 %e A325057 28 0 < 1 < 3 %e A325057 4 0 < 1 < 4 %e A325057 8 0 < 2 < 3 %e A325057 14 0 < 2 < 4 %e A325057 23 1 < 2 < 3 %e A325057 29 1 < 2 < 4 %p A325057 b:= proc(n, i) option remember; `if`(n=0, 1, %p A325057 add(b(n-1, j-1), j=1..min(i, ithprime(n)))) %p A325057 end: %p A325057 a:= n-> b(n, infinity): %p A325057 seq(a(n), n=0..24); # _Alois P. Heinz_, Jan 04 2023 %o A325057 (Python) %o A325057 from sympy import prime %o A325057 def f(k, r, n): %o A325057 if k==n: return prime(k)-r %o A325057 global cache ; args = (k, r) %o A325057 if args in cache: return cache[args] %o A325057 rv = f(k+1, r+1, n) %o A325057 if r < (prime(k)-1): rv += f(k, r+1, n) %o A325057 cache[args]=rv ; return rv %o A325057 def A325057(n): %o A325057 global cache ; cache = {} %o A325057 return f(1, 0, n) %Y A325057 Cf. A002110, A306582, A306612. %K A325057 nonn %O A325057 0,2 %A A325057 _Bert Dobbelaere_, Sep 04 2019 %E A325057 Name edited and a(0)=1 prepended by _Alois P. Heinz_, Jan 04 2023