This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325070 #16 Apr 12 2019 08:25:05 %S A325070 73,89,233,281,601,617,937,1033,1049,1097,1193,1289,1433,1481,1609, %T A325070 1721,1753,1801,1913,2089,2281,2393,2441,2473,2857,2969,3049,3257, %U A325070 3449,3529,3673,3833,4057,4153,4201,4217,4297,4409,4457,4937,5081,5113,5209,5689,5737 %N A325070 Prime numbers congruent to 9 modulo 16 representable by x^2 + 64*y^2. %C A325070 Kaplansky showed that prime numbers congruent to 9 modulo 16 are representable by exactly one of the quadratic forms x^2 + 32*y^2 or x^2 + 64*y^2. A325069 corresponds to those representable by the first form and this sequence to those representable by the second form. %H A325070 David Brink, <a href="https://doi.org/10.1016/j.jnt.2008.04.007">Five peculiar theorems on simultaneous representation of primes by quadratic forms</a>, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893. %H A325070 Rémy Sigrist, <a href="/A325070/a325070.gp.txt">PARI program for A325070</a> %H A325070 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kaplansky%27s_theorem_on_quadratic_forms">Kaplansky's theorem on quadratic forms</a> %e A325070 Regarding 4201: %e A325070 - 4201 is a prime number, %e A325070 - 4201 = 262*16 + 9, %e A325070 - 4201 = 51^2 + 64*5^2, %e A325070 - hence 4201 belongs to this sequence. %o A325070 (PARI) See Links section. %Y A325070 See A325067 for similar results. %Y A325070 Cf. A105126, A325069. %K A325070 nonn %O A325070 1,1 %A A325070 _Rémy Sigrist_, Mar 27 2019