A325071 Prime numbers congruent to 1 modulo 20 representable by both x^2 + 20*y^2 and x^2 + 100*y^2.
101, 181, 401, 461, 521, 541, 761, 941, 1021, 1061, 1361, 1601, 1621, 1721, 1741, 1861, 2081, 2441, 2621, 2801, 2861, 3001, 3121, 3301, 3461, 3581, 3821, 3881, 4001, 4021, 4201, 4441, 4561, 4621, 4861, 5021, 5081, 5101, 5261, 5281, 5441, 5741, 5861, 5981, 6221
Offset: 1
Keywords
Examples
Regarding 1601: - 1601 is a prime number, - 1601 = 80*20 + 1, - 1601 = 39^2 + 20*2^2 = 1^2 + 100*4^2, - hence 1601 belongs to this sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Rémy Sigrist, PARI program for A325071
- Wikipedia, Kaplansky's theorem on quadratic forms
Programs
-
PARI
See Links section.
Comments