A325072 Prime numbers congruent to 1 modulo 20 neither representable by x^2 + 20*y^2 nor by x^2 + 100*y^2.
41, 61, 241, 281, 421, 601, 641, 661, 701, 821, 881, 1181, 1201, 1301, 1321, 1381, 1481, 1801, 1901, 2141, 2161, 2221, 2281, 2341, 2381, 2521, 2741, 3041, 3061, 3181, 3221, 3361, 3541, 3701, 3761, 4241, 4261, 4421, 4481, 4721, 4801, 5381, 5501, 5521, 5581
Offset: 1
Keywords
Examples
Regarding 2221: - 2221 is a prime number, - 2221 = 111*20 + 1, - 2221 is neither representable by x^2 + 20*y^2 nor by x^2 + 100*y^2, - hence 2221 belongs to this sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Akihide Hanaki, Kenji Kobayashi, and Akihiro Munemasa, 3-Designs from PSL(2,q) with cyclic starter blocks, arXiv:2502.13331 [math.CO], 2025. See pp. 2, 9, 13.
- Rémy Sigrist, PARI program for A325072
- Wikipedia, Kaplansky's theorem on quadratic forms
Programs
-
PARI
\\ See Links section.
Comments