A325067 Prime numbers congruent to 1 modulo 16 representable by both x^2 + 32*y^2 and x^2 + 64*y^2.
113, 257, 337, 353, 577, 593, 881, 1153, 1201, 1217, 1249, 1553, 1601, 1777, 1889, 2113, 2129, 2273, 2593, 2657, 2689, 2833, 3089, 3121, 3137, 3217, 3313, 3361, 3761, 4001, 4049, 4177, 4273, 4289, 4481, 4513, 4657, 4721, 4801, 4817, 4993, 5233, 5297, 5393
Offset: 1
Keywords
Examples
Regarding 1201: - 1201 is a prime number, - 1201 = 75*16 + 1, - 1201 = 7^2 + 32*6^2 = 25^2 + 64*3^2, - hence 1201 belongs to the sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Rémy Sigrist, PARI program for A325067
- Wikipedia, Kaplansky's theorem on quadratic forms
Crossrefs
Programs
-
PARI
See Links section.
Comments