This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325075 #15 Apr 12 2019 08:25:42 %S A325075 139,157,367,523,547,607,991,997,1153,1171,1231,1249,1381,1459,1483, %T A325075 1693,1933,1951,2011,2029,2473,2557,3121,3181,3253,3259,3433,3511, %U A325075 3643,3877,4111,4447,4603,4663,4759,5521,5749,5827,6007,6163,6217,6301,6397,6451,6553 %N A325075 Prime numbers congruent to 1, 16 or 22 modulo 39 representable by both x^2 + x*y + 10*y^2 and x^2 + x*y + 127*y^2. %C A325075 Brink showed that prime numbers congruent to 1, 16 or 22 modulo 39 are representable by both or neither of the quadratic forms x^2 + x*y + 10*y^2 and x^2 + x*y + 127*y^2. This sequence corresponds to those representable by both, and A325076 corresponds to those representable by neither. %H A325075 David Brink, <a href="https://doi.org/10.1016/j.jnt.2008.04.007">Five peculiar theorems on simultaneous representation of primes by quadratic forms</a>, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893. %H A325075 Rémy Sigrist, <a href="/A325075/a325075.gp.txt">PARI program for A325075</a> %H A325075 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kaplansky%27s_theorem_on_quadratic_forms">Kaplansky's theorem on quadratic forms</a> %e A325075 Regarding 997: %e A325075 - 997 is a prime number, %e A325075 - 997 = 25*39 + 22, %e A325075 - 997 = 27^2 + 27*4 + 10*4^2 = 29^2 + 29*1 + 127*1^2, %e A325075 - hence 997 belongs to this sequence. %o A325075 (PARI) See Links section. %Y A325075 See A325067 for similar results. %Y A325075 Cf. A325076. %K A325075 nonn %O A325075 1,1 %A A325075 _Rémy Sigrist_, Mar 28 2019