A325076 Prime numbers congruent to 1, 16 or 22 modulo 39 neither representable by x^2 + x*y + 10*y^2 nor by x^2 + x*y + 127*y^2.
61, 79, 211, 313, 373, 601, 757, 859, 919, 937, 1069, 1093, 1303, 1327, 1543, 1621, 1699, 1777, 1873, 2083, 2089, 2161, 2239, 2341, 2551, 2707, 2713, 2731, 2791, 2887, 3019, 3331, 3571, 3727, 3823, 4057, 4273, 4423, 4507, 4657, 4813, 4969, 4993, 5209, 5227
Offset: 1
Keywords
Examples
Regarding 61: - 61 is a prime number, - 61 = 39 + 22, - 61 is neither representable by x^2 + x*y + 10*y^2 nor by x^2 + x*y + 127*y^2, - hence 61 belongs to this sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Rémy Sigrist, PARI program for A325076
- Wikipedia, Kaplansky's theorem on quadratic forms
Programs
-
PARI
See Links section.
Comments