A325077 Prime numbers congruent to 4, 10 or 25 modulo 39 representable by x^2 + x*y + 10*y^2.
43, 103, 181, 277, 439, 673, 751, 823, 1039, 1063, 1117, 1429, 1453, 1759, 1993, 1999, 2131, 2287, 2311, 2467, 2521, 2539, 2617, 2833, 2851, 2857, 3067, 3163, 3457, 3559, 3613, 3637, 3847, 3943, 4021, 4027, 4177, 4261, 4339, 4723, 4783, 4861, 5113, 5119, 5197
Offset: 1
Keywords
Examples
Regarding 43: - 43 is a prime number, - 43 = 39 + 4, - 43 = 1^2 + 1*2 + 10*2^2, - hence 43 belongs to this sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Rémy Sigrist, PARI program for A325077
- Wikipedia, Kaplansky's theorem on quadratic forms
Programs
-
PARI
See Links section.
Comments