A325080 Prime numbers congruent to 1, 16, 26, 31 or 36 modulo 55 neither representable by x^2 + x*y + 14*y^2 nor by x^2 + x*y + 69*y^2.
31, 181, 191, 331, 401, 421, 521, 641, 911, 971, 991, 1021, 1291, 1301, 1511, 1621, 1831, 1871, 2011, 2161, 2281, 2311, 2381, 2861, 3001, 3041, 3061, 3221, 3301, 3331, 3391, 3821, 3931, 4051, 4211, 4261, 4271, 4621, 4691, 4801, 4871, 4931, 4951, 5021, 5171
Offset: 1
Keywords
Examples
Regarding 31: - 31 is a prime number, - 31 = 0*55 + 31, - 31 is neither representable by x^2 + x*y + 14*y^2 nor by x^2 + x*y + 69*y^2, - hence 31 belongs to this sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Rémy Sigrist, PARI program for A325080
- Wikipedia, Kaplansky's theorem on quadratic forms
Programs
-
PARI
See Links section.
Comments