cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325083 Prime numbers congruent to 1, 65 or 81 modulo 112 representable by both x^2 + 14*y^2 and x^2 + 448*y^2.

Original entry on oeis.org

449, 673, 977, 1409, 1873, 2017, 2081, 2129, 2417, 2657, 2753, 3313, 3697, 4001, 4561, 4657, 4673, 4817, 4993, 6689, 6833, 7057, 7121, 7393, 7457, 7793, 8017, 8353, 8369, 8689, 8849, 9377, 9473, 9857, 10193, 10273, 11057, 11393, 11489, 11953, 12161, 12289
Offset: 1

Views

Author

Rémy Sigrist, Mar 28 2019

Keywords

Comments

Brink showed that prime numbers congruent to 1, 65 or 81 modulo 112 are representable by both or neither of the quadratic forms x^2 + 14*y^2 and x^2 + 448*y^2. This sequence corresponds to those representable by both, and A325084 corresponds to those representable by neither.

Examples

			Regarding 3313:
- 3313 is a prime number,
- 3313 = 29*112 + 65,
- 3313 = 53^2 + 14*6^2 = 39^2 + 448*2^2,
- hence 3313 belongs to this sequence.
		

Crossrefs

See A325067 for similar results.
Cf. A325084.

Programs

  • PARI
    See Links section.