A325083 Prime numbers congruent to 1, 65 or 81 modulo 112 representable by both x^2 + 14*y^2 and x^2 + 448*y^2.
449, 673, 977, 1409, 1873, 2017, 2081, 2129, 2417, 2657, 2753, 3313, 3697, 4001, 4561, 4657, 4673, 4817, 4993, 6689, 6833, 7057, 7121, 7393, 7457, 7793, 8017, 8353, 8369, 8689, 8849, 9377, 9473, 9857, 10193, 10273, 11057, 11393, 11489, 11953, 12161, 12289
Offset: 1
Keywords
Examples
Regarding 3313: - 3313 is a prime number, - 3313 = 29*112 + 65, - 3313 = 53^2 + 14*6^2 = 39^2 + 448*2^2, - hence 3313 belongs to this sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Rémy Sigrist, PARI program for A325083
- Wikipedia, Kaplansky's theorem on quadratic forms
Programs
-
PARI
See Links section.
Comments