This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325084 #15 Apr 12 2019 18:54:18 %S A325084 113,193,337,401,641,1009,1201,1297,2689,2801,3089,3137,3217,3329, %T A325084 3361,3761,3889,4337,4481,5009,5153,5233,5441,5569,6113,6337,6353, %U A325084 6449,6577,6673,7681,7841,8513,8737,8929,9041,9137,9521,9601,9697,10369,10529,10753 %N A325084 Prime numbers congruent to 1, 65 or 81 modulo 112 neither representable by x^2 + 14*y^2 nor by x^2 + 448*y^2. %C A325084 Brink showed that prime numbers congruent to 1, 65 or 81 modulo 112 are representable by both or neither of the quadratic forms x^2 + 14*y^2 and x^2 + 448*y^2. A325083 corresponds to those representable by both, and this sequence corresponds to those representable by neither. %H A325084 David Brink, <a href="https://doi.org/10.1016/j.jnt.2008.04.007">Five peculiar theorems on simultaneous representation of primes by quadratic forms</a>, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893. %H A325084 Rémy Sigrist, <a href="/A325084/a325084.gp.txt">PARI program for A325084</a> %H A325084 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kaplansky%27s_theorem_on_quadratic_forms">Kaplansky's theorem on quadratic forms</a> %e A325084 Regarding 113: %e A325084 - 113 is a prime number, %e A325084 - 113 = 1*112 + 1, %e A325084 - 113 is neither representable by x^2 + 14*y^2 nor by x^2 + 448*y^2, %e A325084 - hence 113 belongs to this sequence. %o A325084 (PARI) See Links section. %Y A325084 See A325067 for similar results. %Y A325084 Cf. A325083. %K A325084 nonn %O A325084 1,1 %A A325084 _Rémy Sigrist_, Mar 28 2019