A325085 Prime numbers congruent to 9, 25 or 57 modulo 112 representable by x^2 + 14*y^2.
137, 233, 281, 953, 1033, 1129, 1481, 2137, 2377, 2713, 2857, 2969, 3529, 3593, 3833, 4649, 4729, 5657, 5737, 5849, 6217, 6329, 6521, 6857, 7001, 7561, 8089, 8233, 8297, 8761, 8969, 9209, 9241, 9433, 9689, 10313, 11113, 12377, 12457, 12553, 12601, 12713, 12889
Offset: 1
Keywords
Examples
Regarding 11113: - 11113 is a prime number, - 11113 = 99*112 + 25, - 11113 = 103^2 + 14*6^2, - hence 11113 belongs to this sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Rémy Sigrist, PARI program for A325085
- Wikipedia, Kaplansky's theorem on quadratic forms
Programs
-
PARI
See Links section.
Comments