This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325086 #12 Apr 12 2019 18:54:37 %S A325086 457,569,617,809,1289,1801,1913,2153,2297,2473,2521,2633,3049,3257, %T A325086 3929,4057,4153,4201,4937,5209,5273,5881,6073,6553,6841,7177,7193, %U A325086 7417,7529,7673,7753,8009,8521,8537,8681,9769,10889,11257,11321,11369,11593,11657,11897 %N A325086 Prime numbers congruent to 9, 25 or 57 modulo 112 representable by x^2 + 448*y^2. %C A325086 Brink showed that prime numbers congruent to 9, 25 or 57 modulo 112 are representable by exactly one of the quadratic forms x^2 + 14*y^2 or x^2 + 448*y^2. A325085 corresponds to those representable by the first form, and this sequence corresponds to those representable by the second form. %H A325086 David Brink, <a href="https://doi.org/10.1016/j.jnt.2008.04.007">Five peculiar theorems on simultaneous representation of primes by quadratic forms</a>, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893. %H A325086 Rémy Sigrist, <a href="/A325086/a325086.gp.txt">PARI program for A325086</a> %H A325086 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kaplansky%27s_theorem_on_quadratic_forms">Kaplansky's theorem on quadratic forms</a> %e A325086 Regarding 7177: %e A325086 - 7177 is a prime number, %e A325086 - 7177 = 64*112 + 9, %e A325086 - 7177 = 3^2 + 448*4^2, %e A325086 - hence 7177 belongs to this sequence. %o A325086 (PARI) See Links section. %Y A325086 See A325067 for similar results. %Y A325086 Cf. A325085. %K A325086 nonn %O A325086 1,1 %A A325086 _Rémy Sigrist_, Mar 28 2019