cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325087 Prime numbers congruent to 1 or 169 modulo 240 representable by both x^2 + 150*y^2 and x^2 + 960*y^2.

This page as a plain text file.
%I A325087 #14 Apr 12 2019 18:54:44
%S A325087 1129,3361,3769,4801,5209,5449,5521,5689,8329,8641,9601,9769,10009,
%T A325087 10321,10729,12409,13681,15121,15289,15361,15601,16561,16729,17041,
%U A325087 17209,17761,18169,18481,20089,21529,21601,23761,24001,24169,25609,25849,26641,26881,27529
%N A325087 Prime numbers congruent to 1 or 169 modulo 240 representable by both x^2 + 150*y^2 and x^2 + 960*y^2.
%C A325087 Brink showed that prime numbers congruent to 1 or 169 modulo 240 are representable by both or neither of the quadratic forms x^2 + 150*y^2 and x^2 + 960*y^2. This sequence corresponds to those representable by both, and A325088 corresponds to those representable by neither.
%H A325087 David Brink, <a href="https://doi.org/10.1016/j.jnt.2008.04.007">Five peculiar theorems on simultaneous representation of primes by quadratic forms</a>, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
%H A325087 Rémy Sigrist, <a href="/A325087/a325087.gp.txt">PARI program for A325087</a>
%H A325087 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kaplansky%27s_theorem_on_quadratic_forms">Kaplansky's theorem on quadratic forms</a>
%e A325087 Regarding 10009:
%e A325087 - 10009 is a prime number,
%e A325087 - 10009 = 41*240 + 169,
%e A325087 - 10009 = 97^2 + 0*97*2 + 150*2^2 = 37^2 + 960*3^2,
%e A325087 - hence 10009 belongs to this sequence.
%o A325087 (PARI) See Links section.
%Y A325087 See A325067 for similar results.
%Y A325087 Cf. A325088.
%K A325087 nonn
%O A325087 1,1
%A A325087 _Rémy Sigrist_, Mar 28 2019